
Fluid descriptions of externally heated tokamak

plasmas

Zhisong Qu

A thesis submitted for the degree of
Doctor of Philosophy of

The Australian National University

November, 2016



ii

c©Copyright by Zhisong Qu 2016



Declaration

This thesis is an account of research undertaken between October 2012 and November

2016 at Research School of Physics and Engineering, the Australian National University,

Canberra ACT 2601, Australia. Except where acknowledged in the customary manner,

the material presented in this thesis is, to the best of my knowledge, original and has not

been submitted in whole or part for a degree in any university.

The supervisory panel of this thesis includes

• A/Prof. Matthew J. Hole (ANU, Panel chair),

• Dr. Michael Fitzgerald (Culham Centre for Fusion Energy, Advisor),

• Em. Prof. Robert L. Dewar (ANU, Advisor),

• Dr. Boyd D. Blackwell (ANU, ANSTO co-supervisor).

Part of this thesis was accomplished in collaboration with Dr. Brett Layden (ANU).

Zhisong Qu

November 2016

iii



iv



Publications

This thesis is a thesis by compilation. Its main body consists of five of my publications

as follows.

• Chapter 2: Z.S. Qu, M. Fitzgerald, M.J. Hole (2014). Analysing the impact of

anisotropy pressure on tokamak equilibria, Plasma Phys. Control. Fusion, 56,

075007.

90% my work, 90% my writing

• Chapter 3: Z.S. Qu, M.J. Hole, M. Fitzgerald (2015). Modeling the effect of

anisotropic pressure on tokamak plasmas normal modes and continuum using fluid

approaches, Plasma Phys. Control. Fusion, 57, 095005.

90% my work, 90% my writing

• Chapter 4: B. Layden, Z.S. Qu, M. Fitzgerald, M.J. Hole (2016). Impact of pressure

anisotropy on magnetic configuration and stability, Nuclear Fusion, 56, 112017.

35% my work, 30% my writing

• Chapter 5: Z.S. Qu, M.J. Hole, M. Fitzgerald (2016). Energetic Geodesic Acoustic

Modes Associated with Two-Stream-like Instabilities in Tokamak Plasmas, Phys.

Rev. Lett., 116, 095004.

90% my work, 90% my writing

• Chapter 6: Z.S. Qu, M.J. Hole, M. Fitzgerald (2016). Linear radial structure of

reactive energetic geodesic acoustic modes, Plasma Phys. Control. Fusion, 57,

055018

90% my work, 90% my writing

One of the publications is mentioned in Section 1.2.6 and relevant to the topic, but

not included in the main body.

• M. Fitzgerald, M.J. Hole Z.S. Qu (2014). Magnetohydrodynamic normal mode anal-

ysis of plasma with equilibrium pressure anisotropy, Plasma Phys. Control. Fu-

sion, 57, 025018.

10% my work

v



vi



Acknowledgements

First of all, I would like to give my wholehearted thank to my supervisor Matthew

Hole, for the enormous amount of time and efforts he spent on my research and education.

I will never forget the time when I gave the first draft of my first paper to him: the physics

was a mass, the English was crap, everything was disordered. Matthew didn’t tear it apart

which I would if given a chance, he instead helped me patiently to revise it for at least

six times, until it finally got better. It was not just to improve the writing, he told me

to observe my progress step by step and see deeply why and how to get better in each

iteration. I also appreciate greatly his attitude to consider me as a colleague, a friend

rather than a student and his help in my future career development. I am involved in

his conference abstract submission, funding application and decision making process, and

also getting funding support to attend conferences, to visit another institute, and to go to

the Carolus Magnus Summer School. These really helped me to see more, to know more,

to stand beyond the point of view of a PhD student. I would not have achieved anything

I have done today without him.

I am also indebted to my advisor Michael Fitzgerald. I can still remember the many

afternoons I spent in his office asking silly, basic questions, and I always got nice and

friendly, but pin-pointed answers. To be honest, it was him on whom I build up the

foundation of my world of plasma physics. Our great collaboration went on after he

moved to Culham. He continued to offer me good physics insights as an advisor and

considerations as a friend. He shared with me the most cutting-edge research topics, like

the EGAMs, which I was able to do research on, and any job opportunities he went by. I

really appreciate everything he has done for me.

Bob Dewar is the wise godfather of our group and has very deep physics insights on

many aspect of plasma physics. His advice helped me a lot when I faced some difficult

physics problems, the fluid closure problem and if they satisfy the first and second law of

thermodynamics, for instance. I am grateful to my ANSTO co-supervisor Boyd Blackwell,

who enabled the application of my anisotropic and flowing fluid theory designed for a high

temperature tokamak, to the MAGPIE linear machine with low temperature.

Luckily I had a chance to work with Boris Breizman during my visit to the University of

Texas at Austin, and by Skype and emails afterwards. Working with him is as enjoyable as

drinking a great wine. He always tried to dig out the very basics of physics understandings.

He helped me to refresh and advance my view and knowledge of plasma physics from the

most fundamental level. I have also learned to be strict, to be consistent, and to really

looking for the physics instead of publications.

All my co-authors and I gratefully acknowledge Dr. Guido Huysmans and Dr. Sergei

Sharapov for providing the MISHKA and HELENA source code and their permission to

use the name MISHKA. We would also like to thank Dr. Guoyong Fu and Dr. Alessandro

Biancalani for the fruitful discussions on EGAMs, and Dr. Michael Van Zeeland and Dr.

Raffi Nazikian for DIII-D data. We are indebted to Prof. Herb Berk for suggesting the

boundary conditions and Haijie Zuo for suggesting the Perfectly Matched Layer method.

Many thanks to all my other colleagues, regardless where you are now. I would like to

vii



viii

thank Lei, for being my big brother and teaching me many things in my first year. Thank

Brett, for the days we were working together to address the heart-breaking HAGIS issues.

Thank Hooman, for enduring my horrible teaching. Thank George, Sebastian, Alexis,

Craig, Adelle, Ying and Qixiang, for helping me to solve my problems in life and in

research, and for the laughters and fun we had. Thank Graham and Greg, for answering

my stupid questions. Thank Uyen and Karen, for giving me the best administrative

support. Thank Julie and James, for being my IT support. I also want to give a big thank

you to my friends Rouran, Junhong, Xiaoming and Haitao, my housemates Jiahao, Qian,

Ziqi and Chenxiang, as well as all other friends in RSPE and Graduate House. My tedious

PhD life becomes more colorful and enjoyable because of you.

Finally, I would like to give my special thanks to my parents, who confirm my decision

to study plasma physics and are always on my back to support me. I am ashamed that I

haven’t spent enough time with them since high school. I give the same special thanks to

my love Cuiying, to be the warmth in my heart, to help me through the most depressed

period and to wait for me in China for two and a half years until I finish my PhD. I owe

all of you a lot.

I acknowledge the funding support from the China Scholarship Council to enable my

study in Australia. I would like to thank AINSE Ltd. for providing funding assistance

(Award-PGRA) to enable the study on MAGPIE. I have also received funding supports

from the ANU Vice-Chancellor Travel Grant, Australian ARC Projects No. DP1093797

and No. FT0991899, and from Centre of Plasmas and Fluids and the former Plasma

Research Laboratory, of Research School of Physics and Engineering, ANU. This work

was part funded by the RCUK Energy Programme (Grant No. EP/I501045).

Let me conclude my acknowledgements with the funny words I found in this thesis

template: I would like to thank my lucky stars, and the cat, for not eating me. I would

like to thank my PhD for not eating me, but making me stronger and maturer in both

academia and life.



Abstract

External heating methods such as neutral beam injection (NBI) and ion cyclotron

resonance heating (ICRH) generate a large amount of fast ions in tokamak plasmas. The

widely implemented MHD single fluid theory with isotropic pressure is no longer sufficient

to capture the physics of such plasmas. Despite the shortcoming of a fluid theory, such

as the fluid closure problem and the lack of wave-particle interactions, the use of a fluid

description in a tokamak with external heated fast ions is possible and has proved fruitful

due to its simple and intuitive nature, as shown in this thesis.

Due the presence of the fast ions, the total plasma pressure becomes anisotropic. In

other words, the pressure parallel to the magnetic field differs from its perpendicular coun-

terpart. We have upgraded the fast ion driven instability tool chain HELENA-MISHKA-

HAGIS to new versions with pressure anisotropy, taking the simplification that the whole

plasma (electrons, fast and thermal ions) is a bi-Maxwellian fluid. Based on this new

tool chain and analytical analysis, we have identified the impact of pressure anisotropy

induced by externally heated fast ions on the plasma equilibrium, waves and instabilities.

It has been found that if an isotropic model is used to describe an anisotropic plasma, a

range of problems will emerge depending on the inverse aspect ratio and the magnitude

of anisotropy. These problems include the inconsistency of the poloidal (diamagnetic)

current, the constant pressure surface shifting away from the flux surfaces, and finally a

distortion of the current and q profile. Two MAST experimental discharges are analyzed,

while in one of them, #29221@190ms, all three problems are presented, confirming the

prediction. The equilibrium reconstructions for this discharge with/without anisotropy

give different q profiles. This difference in the q profile leads to different continua, differ-

ent n = 1 TAE mode structures, and finally, different growth rates and saturation levels.

The tool chain has also been used to carry on other physics studies such as an investiga-

tion of the dependency of the continuous spectra on different fluid closures and level of

anisotropy.

In addition to the waves that are supported by the thermal plasma, and modified

and driven unstable by the fast ions, there are a family of waves, the energetic particle

modes (EPMs), whose existence and property are determined by the fast ions, such as the

energetic geodesic acoustic modes (EGAMs). The EGAMs are m = n = 0 bursting and

chirping modes first observed in DIII-D counter beam experiments. By considering the

fast ions as a fluid with a collective flow along the field lines, we have reached a dispersion

relationship that gives an unstable branch at half of the thermal GAM frequency. We

have also found that when the beam is cold, there is a good agreement between our fluid

theory and the existing kinetic theories. However, since the fluid theory does not capture

the physics of inverse Landau damping, the source of the instability must be reactive, in

contrast to the previous understandings. Furthermore, a smooth transition between the

the reactive EGAMs and the wave-particle interaction driven EGAMs is found when the

beam temperature gradually increases, resembling the transition between the two-stream

instability and the bump-on-tail instability in a beam-plasma system. This local fluid

model is then extended to a global one to capture the physics of EGAM radial mode
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structure in the regime where fast ion drift orbit width is smaller than the mode width.

The dependency of the mode structure on the equilibrium q profiles and the beam injection

direction is investigated.

By demonstrating the above two applications of the fluid theory and the corresponding

physics discoveries, we have proved the usefulness of a fluid treatment in tokamak plasmas

with external heatings, serving to understanding some of the basic fast ions physics and

acting as a powerful and indispensable complement to its kinetic counterpart.
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Chapter 1

Introduction

Nuclear fusion happens when two or more light nuclei combine and form one or more

(usually) heavier nuclei and neutron(s)/proton(s). The product mass is slightly lighter

than the sum of the reactants, and this deficiency in mass is released as kinetic energy of

the fusion products. In a fusion power plant, the energetic products of the fusion reactions

would heat the surroundings through collisions and the heat would be utilized to generate

electricity. The main fusion reaction we are trying to make use of in a fusion reactor is [1]

D + T→4 He + n+ 17.6MeV.

(1.1)

Deuterium is rich in sea water and tritium can be bred from lithium, the 23rd most

common element on Earth. The only waste products are helium and neutron with zero

greenhouse gas emissions. The cross-section of this reaction has its maximum when the

relative energy of the reactants reaches 100keV. In reality, a temperature of 10keV, still

116 million Kelvin, will give a sufficient reaction rate, thanks to the high energy tail of

the Maxwellian distribution. With such a high temperature, the reactants are no longer

in the state of gas, but known as a plasma, the “fourth state of matter”, in which their

electrons and ions are not bonded to each other. A textbook definition [2] of plasma is as

follows.

1. A plasma consists of charged particles and sometimes neutrals, but is macroscopically

quasi-neutral.

2. A plasma is characterized by its collective interaction with electromagnetic field.

The scale length of the system is larger then the Debye shielding length λD =√
ε0Te/nee2.

3. The electron-neutral collision frequency is lower than the natural oscillating fre-

quency of the plasma (plasma frequency) ωpe =
√
nee2/meε0, allowing the domina-

tion of electromagnetic interactions over ordinary gas dynamics.

Here, ε0 is the electric vacuum permittivity constant, Te the electron temperature (in

energy unit such as keV), ne the electron number density, e the electron charge, me the

electron mass.

Plasma is common in the universe: more than 90% of the baryonic matter in the

universe is believed to be in the plasma state. In everyday life, although rarely noticed,

plasmas can be found in flames, in fluorescent lamps, as well as in lighting strikes. The

focus of this thesis will be on the physics of the plasma generated by fusion experiments,

i.e. fusion plasma physics.

1



2 Introduction

Reaching the desired temperature is not the only obstacle on the way to fusion as an

energy source: we need a sufficiently high density of plasma to be confined for a sufficiently

long time, so the power it releases can exceed the power used to heat itself. In other words,

the fusion “triple product”, the temperature × the density × the confinement time must be

sufficiently large to achieve “ignition” of the fusion reactor. This is known as the Lawson

Criterion [3]. Currently there are two major approaches to harness fusion on Earth: by

inertial confinement, or magnetic confinement. The topic of this thesis falls into the latter

category.

It is well known that charged particles experience Lorentz force FL = esv ×B, where

es is the charge of the particle species “s”, v is the particle velocity and B is the magnetic

field. Due to the Lorentz force, particles will gyrate around a magnetic field line, limiting

their movement across the field lines : they are confined.

In this chapter, we will first introduce the magnetic confinement machine we are study-

ing, the tokamak, and its external heating methods. We will then give some basics of the

plasma theories used in this thesis and talk about their limitation and applications. Af-

terwards, the tokamak equilibrium theory and the fast ion driven instabilities are briefly

discussed. Finally, we will give a brief summary of the aims and the major points of this

thesis.

1.1 The tokamak and its external heating methods

1.1.1 The tokamak

If the magnetic field is homogeneous, the particles will stay around one field line unless

collisions with other particles take place. However, they are allowed to move freely along

the field lines and leak from the two ends, if the confinement space is finite. One approach

to confine plasma in a finite volume is by bending the fields into a torus and putting the

two ends together. The magnetic field becomes inhomogeneous due to the bending, which

gives rise to the cross-field gradient and curvature drift of the particle’s gyro-centre given

by [2, 4]

vd =
msv

2
⊥

2esB3
B ×∇B +

msv
2
‖

esB3
B ×

(
B · ∇B

B

)
, (1.2)

where ms is the mass of the particle species “s”, v‖ and v⊥ its velocity parallel and

perpendicular to the magnetic field, and B is the strength of the magnetic field. The

direction of vd is charge dependent, i.e. the ions will drift up and the electrons will drift

down, creating a charge separation in the vertical direction. This charge separation will

generate a vertical electric field, leading to the E ×B drift of the particles given by

vE =
E ×B
B2

, (1.3)

in which E is the electric field. The direction of the E ×B drift is pointing outward of

the torus, resulting in the loss of plasma. Therefore, a torus with only toroidal magnetic

fields cannot confine plasmas effectively.

The way to overcome this difficulty is to add a poloidal magnetic field to the existing

toroidal field. When the particles follow the field lines, their gyro-centre will move both

toroidally and poloidally. For ions, as the direction of vd always faces up, they drift into

the centre of the plasma when they are lower than the mid-plane and away from the

centre in the other half of the time. They will therefore on average stay around a field
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line without creating any charge separation. For electrons, the situation is similar. There

are basically two designs of toroidal magnetic confinement machines with such a poloidal

magnetic field: by inducing a large toroidal current in the plasma, namely tokamaks, or

by twisting the shape of the plasma, namely stellarators. Schematic views of a tokamak

and a stellarator are given in Fig.1.1 (a) and (b), respectively. We will focus on tokamaks

in this thesis.

Figure 1.1: Schematic plots of (a) a tokamak and (b) a stellarator. Image source: IPP, EURO-

Fusion websites.

As shown in Fig.1.1, a typical tokamak setup consists of a set of toroidal field coils,

a set of vertical field coils, the first wall facing the plasma, the vacuum chamber, and a

central solenoid to induce the plasma current. The field lines in tokamaks can form a

surface on which σ ·B = 0, where σ is the unit vector perpendicular to the surface. This

surface is called the magnetic surface. The safety factor q is defined in such a way that

following a field line on a magnetic surface,

q =
Number of toroidal turns

Number of polodial turns
. (1.4)

As we will see from later sections, the safety factor q is an important parameter that

determines the plasma stability.

Another important parameter of a tokamak is the aspect ratio, or the inverse aspect

ratio ε = a/R, with R the major radius and a the minor radius of the torus. For traditional

tokamaks such as JET, JT-60U, DIII-D and ITER, ε ∼ 1/3. But tighter aspect ratio

machines, such as a spherical tokamak (ST), are less vulnerable to the so called ballooning

and kink instabilities, and allows a higher β [1], i.e. the ratio of the plasma thermal energy

to the magnetic energy. A higher β means that less energy is needed to sustain the same
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plasma. The trade off is that the ST has very limited room for the central solenoid, so

the Ohmic current drive is limited (see the next section). MAST(Upgrade) and NSTX are

two of the world’s major ST experiments, with the parameter ε ∼ 0.7.

1.1.2 External heating methods

Besides inducing the plasma current and generating the polodial field, the central

solenoid is also used as a transformer to heat the plasma up through P = I2R. The

heating is effective when the plasma is cold. However, since the resistivity of the plasma

scales as T
−3/2
i [2], this “Ohmic” heating becomes ineffective beyond 1keV. To reach

the required 10keV for sufficient fusion reaction, external heating methods are required.

There are a variety of external heating methods. We will only focus on two of them in this

thesis: the neutral beam injection (NBI) and the ion cyclotron resonance heating (ICRH).

A schematic plot of tokamak heating methods is shown in Fig.1.2. Note that the ICRH is

a type of radio frequency heating.

Figure 1.2: Tokamak heating methods: Ohmic heating, neutral beam injection and radio fre-

quency heating. Image source: EUROFusion website.

In NBI [1], a small amount of gas, usually hydrogen isotopes, is ionized externally. The

ions in the NBI source plasma are accelerated in a electric field to a high energy (∼ 100keV,

can be up to 1MeV if negative ion technique is used [5]). These ions are then neutralized

so they can penetrate the magnetic field, and are injected into the plasma. The injected

neutral particles usually go through charge exchange processes and become ionized again,

then gradually deposit their energy to the background plasma through collisions. We call

them fast ions due to their excessive energy compared to the background (bulk) plasma

(< 10keV). From their nature, NBI fast ions are strongly directional. Their pitch angle

(the angle between the magnetic field line and the particle’s velocity) will be scattered

but mostly preserved during their slowing down in the background plasma [6]. They will

have more energy in the parallel motion than in the perpendicular motion, if the injection

is parallel to the magnetic field, or reverse if the injection is perpendicular, both leading

to strong pressure anisotropy (see Section 1.2.5). In addition, the momentum injected by

NBI will induce plasma flow in the direction of injection.

Unlike NBI, ICRH uses radio frequency electromagnetic waves to heat the plasma [1].

The ions in the plasma gyrate around the magnetic field at their cyclotron frequency
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ωCi = eiB/mi, where mi is the mass of the ion. They resonate with an electromagnetic

wave that has the same frequency, or a harmonic of it, and absorb energy [7]. This is the

principle of ICRH. The affected ions can be a proportion of the major ion species in the

plasma, or a minor species with a different charge-mass ratio (e.g. protons in a deuterium

plasma). Their energy after heating can reach as high as several hundreds of keVs to

several MeVs: they are fast ions compared to the background plasma. Since the heating

takes place in the direction perpendicular to the magnetic field, the ions tend to gyrate

faster and have higher perpendicular energy after heating, while their parallel velocity is

less affected [8]. The pressure of ICRH fast ions is thus highly anisotropic.

1.2 The basic theories of plasma as a fluid

In this section, we start from the theory of single particle motion in the electromagnetic

field, and introduce step by step the kinetic theory, the two(multi)-fluid theory and finally

the Magnetohydrodynamics theory and the guiding centre plasma theory. We will also

give a discussion about the implications and applicability of three different fluid closures:

the MHD adiabatic gas law, the double-adiabatic theory, and the single-adiabatic theory.

1.2.1 Kinetic theory

The plasma theory at the most fundamental level describes the motion of each particle

in the electromagnetic field through

F = qs(E + v ×B). (1.5)

However, to completely cover every particle in a fusion plasma, we need to follow the

motion of at least 1019 particles in per cubic metre in 3 dimensions. This is beyond our

current computation power. So instead of following each particle, one can assume that

the behaviour of a group of particles is similar and follow each group, and use a statistical

“distribution function” to indicate how many particles there are in each group. This is

the kinetic description. The meaning of a distribution f is the number of particles in a

small differential cube d3xd3v, divided by the size of the cube, giving the so called “phase

space” density. The kinetic description reduces the problem to solving f in 6 dimension

phase space plus time. The Liouville’s theorem in statistical mechanics gives the evolution

of f over time, i.e. the Vlasov equation, given by

∂f

∂t
+ v · ∇f +

F

ms
· ∇vf =

∑
s1

Cs,s1, (1.6)

where ms is the mass of particle species “s”, and Cs,s1 is the collision operator between

two species. That is to say, the distribution function along particle trajectory in the phase

space is constant, unless a collision changes it.

Having the distribution function for each species, we still need the Maxwell’s Equations

[9] to describe the dynamics of the electromagnetic field. They are given by

∇ ·E =
1

ε0

∑
s

qsns, (1.7)

∇ ·B = 0, (1.8)
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∇×E = −∂B
∂t

, (1.9)

∇×B = µ0

∑
s

qsnsVs + ε0µ0
∂E

∂t
, (1.10)

where µ0 is the magnetic vacuum permittivity while ns and Vs are the number density

and the average velocity of species “s” given by

ns =

∫
d3vfs(x,v, t), (1.11)

Vs =
1

ns

∫
d3vvfs(x,v, t). (1.12)

Now with Eq. (1.6)-(1.10), the system is closed and solvable. We note that the displace-

ment current term (last term) in Eq. (1.10) is often ignored if the phase velocity of the

wave is much slower than the speed of light.

When the time scale of the activity is much longer than the particle gyro-period and

the space scale of the activity is much larger than the gyro-radius (Lamor radius) of the

particles, the gyro motion of the particle can be averaged out. One can use the motion of

the “guiding centre”, the centre of the particle gyro orbit to represent the motion of the

particle. The distribution function is now reduced to f = f(x, v‖, v⊥, t) in 5D plus time,

leaving out the gyro-angle (see for example Ref. [10]).

1.2.2 Fluid description

In Maxwell’s equations, the electromagnetic field only responds to the macroscopic

quantities (density and current) of the plasma. The complexity of the system can be

further reduced if we can also describe the dynamics of the plasma by their macroscopic

quantities (such as density, velocity and pressure), which will reduce the problem to solving

the macroscopic quantities in 3D plus time. These quantities are usually intuitive and

measurable, and can therefore provide very good physics insights. Taking the moments

of the Vlasov equation Eq. (1.6), i.e. multiplying Eq. (1.6) by 1 (zeroth order), v (first

order), vv (second order),· · · , and integrating over the velocity space, with a proper choice

of collision operator one will get the zeroth and first moment equations given by [9]

∂ns
∂t

+∇ · (nsVs) = 0, (1.13)

msns
dVs
dt

= qs(E + Vs ×B)−∇ · Ps −
∑
s1

msνs,s1(Vs − Vs1), (1.14)

where νs,s1 is the collision rate between species “s” and “s1” and Ps is the pressure tensor

defined by

Ps =

∫
d3vms(v − Vs)(v − Vs)fs(x,v, t). (1.15)

Equation (1.13) and (1.14) are the continuity equation and the momentum equation.

The process of generating moments can be continued to infinite order. The equation of

nth moment will have the presence of the n + 1′th moment due to the second term in

the Vlasov equation, making the number of variables and equations required to solve the

system infinite. This is the fluid closure problem (Section 1.2.6).
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1.2.3 Magnetohydrodynamics

Up to now we distinguish between the dynamics of different species, having a set

of Eq. (1.13) and (1.14) for each species (electrons, ions, etc). It has the name “two-

fluid” or “multi-fluid” theory depending on the number of species. The system can be

further reduced if the behaviour of individual species is less important: we can consider

all of them together as one fluid. The most commonly used single-fluid theory is the

MagnetoHydroDynamics (MHD) theory, with the equations given by [9]

∂ρ

∂t
+∇ · (ρV ) = 0, (1.16)

ρ
dV

dt
= J ×B −∇p, (1.17)

E + V ×B = ηJ +
J ×B
ene

− ∇pe
ene

, (1.18)

d

dt

(
p

ργ

)
= 0, (1.19)

where the single-fluid quantities are defined as ρ =
∑

smsns, J =
∑

s qsnsVs, p =
∑

s ps =∑
s nsTs and V is the velocity of the centre of mass. One important assumption in MHD

is the quasi-neutrality condition, namely∑
s

esns = 0. (1.20)

The quasi-neutrality condition is valid when τwave � 1/ωpe, i.e. the electrons move rapidly

enough to neutralize the charge separation, and Lwave � λD, i.e. the ions are well shielded

by the surrounding electrons. Here, τwave and Lwave are the characteristic time constant

and length scale of the phenomenon of interest (e.g. a wave). The quasi-neutrality con-

dition does not mean ∇ ·E = 0, but only indicates that the overall charge density is too

small to be useful elsewhere (e.g. in the momentum equation) [2].

Another key assumption in MHD is the pressure being isotropic, i.e. Ps = psI, associ-

ated with the condition that the collisionality is high so the distribution will thermalize

rapidly. The most commonly used fluid closure of MHD is the adiabatic gas law given by

Eq. (1.19), where γ = 5/3 is the adiabatic index same as that of a single-atom gas. This

fluid closure will be further discussed in Section 1.2.6.

Equation (1.18) is the generalized Ohm’s law. Different terms are retained for the

study of different phenomena with different time scales. In this thesis, we use the ideal

Ohm’s law, in which the right hand side of Eq. (1.18) is taken to be zero, i.e.

E + V ×B = 0. (1.21)

The ideal Ohm’s law is also called the “frozen-in-line” condition, where the lack of resis-

tivity will prevent plasmas fluid elements from drifting off its initial magnetic field lines.

Under the frozen-in-line condition, the magnetic field lines are like strings with tension

and the plasma fluid elements are small masses attached to the string. In reality, if there

is a strong magnetic field, the motion of plasma particles will be restricted in the perpen-

dicular direction and they are “attached” to the field lines. The MHD therefore gives a

reasonable approximation of perpendicular dynamics and are widely used in the study of

shear Alfvén waves, whose perturbed velocity is perpendicular to the magnetic field.
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However in a longer time scale, when resistivity is finite, the field lines will diffuse so

the plasma elements will not be “frozen-in-line”. Substituting Eq. (1.9) and (1.10) into

Eq. (1.18) and drops the last two terms, one reaches

∂B

∂t
= ∇× (V ×B) +

η

µ0
∇2B. (1.22)

For a static plasma V = 0, Eq. (1.22) shows the diffusion of the magnetic field with time

rate τR = L2
waveµ0/η. In a 10keV fusion plasma, η ∼ 10−8Ohm/m [4], giving diffusion

time 102L2
waves, with the unit of Lwave in meter. That is to say, the resistive time scale

in a tokamak is much longer than the typical time scale of an Alfvén wave (∼ 10−5s) and

even the time scale of a sound wave(∼ 10−4s). Therefore, the resistivity term is usually

ignored in the analysis of the aforementioned two waves. The applicability time scale of

the ideal Ohm’s law is below (faster than) the resistive time scale, with the exception

of tearing modes [1]. It can also be extended to above the resistive time scales, to get

qualitative insights into the instabilities that are allowed to develop with no resistivity

(ideal instabilities). However, we note that the presence of of resistivity breaks the self-

adjointness of the force operator, changing its mathematical property. For example, the

inclusion of infinitesimal resistivity may help to solve the damping rate of continuum

damping [11], while the damped solution is mathematically absent in ideal MHD.

Finally, using Eq. (1.14), one can estimate the relative ratio between the last two

terms in Eq. (1.18) and its left hand side to be in the order of ω/ωCi. Therefore, the

applicability time scale of the ideal Ohm’s law is above (shorter than) the cyclotron time

scale, that is to say,

1/ωCi � τwave � τR. (1.23)

In addition, to drop the last two terms, we need the small Larmor radius assumption, i.e.

Lwave � ρL,s [2, 9], where ρL,s = msv⊥/qsB is the Larmor radius.

Unlike in the perpendicular direction, particles can stream freely in the parallel direc-

tion. For a fluid treatment to be valid, in which the particle’s motion is limited in a fluid

element, high collisionality is needed in order to satisfy the criterion lc � dr � Lwave,

where lc is the free mean path of the particle, dr is the fluid element and Lwave is the length

scale of the wave. But we will see in the next chapter, that the perpendicular dynamics

of MHD is valid even in a collisionless plasma.

1.2.4 Guiding center plasma

The guiding centre plasma (GCP) theory is derived from the perspective of a collision-

less plasma[12, 13, 14]. GCP is a rigorous limit, the Vlasov equation Eq. (1.6) is solve by

expanding around small parameter m/e, implying that ωwave/ωCi � 1 and Lwave/ρL,s � 1.

In GCP, all particles are drifting at the E ×B velocity Eq. (1.3) to the lowest order, so

the perpendicular direction of Eq. (1.21) is a natural requirement. Also, the cyclotron

motion of the particles can be averaged out, so the particles can be represented by their

guiding centre, i.e. gyro-averaged particle position. The lowest order Vlasov equation now

becomes

∂fs
∂t

+ (VE + v‖b) · ∇fs

+

[
−b ·

(
∂VE
∂t

+ VE · ∇VE + v‖b · ∇VE
)

+ µB∇ · b+
e

m
E‖

]
∂fs
∂v‖

= 0.
(1.24)
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Similarly, by taking the moments of Eq. (1.24), a set of fluid-like equations can be

obtained, written as

V =
E ×B
B2

+ V‖b, (1.25)

∂ρ

∂t
+∇ · (ρV ) = 0, (1.26)

ρ
dV

dt
=

1

µ0
(∇×B)×B −∇ · P, (1.27)

∂B

∂t
= ∇× (V ×B), (1.28)

where P =
∑

s Ps, and b is the unit vector in the direction of the magnetic field. The

lowest order pressure tensor Ps is in the diagonal form, given by

Ps = p⊥s(I− bb) + p‖sbb, (1.29)

with p⊥s and p‖s the perpendicular and parallel pressure, respectively. This form of

pressure tensor is first found by Chew, Goldberger and Low [15] for a plasma with strong

magnetic fields, using identical parameter expansion to the GCP. The two pressures are

defined by

p⊥s =

∫
d3v

1

2
ms(v⊥ − V⊥,s)2fs(x,v, t), (1.30)

p‖s =

∫
d3v

1

2
ms(v‖ − V‖,s)2fs(x,v, t). (1.31)

Up to now, the set of GCP equations Eq. (1.25) to (1.28) matches the ideal MHD equations

and the Maxwell equations except for the pressure tensor. That is to say, a lack of collision

will not change the property of the plasma perpendicular dynamics derived in MHD.

However, the GCP does not provide a fluid closure equation like Eq. (1.19). Equation

(1.27) is closed directly by the kinetic equation Eq. (1.24), while the parallel electric field

E‖ in Eq. (1.24) is determined by the quasi-neutrality condition given by

∑
s

es

∫
fsd

3v = 0. (1.32)

The system is then closed.

The advantage of GCP is obvious, by taking a step back to the kinetic theory, it avoids

the problems of fluid closure and Landau damping, while still keeping the niceness and

easiness of MHD perpendicular dynamics. The shortcoming of the GCP theory is also

obvious, it loses part of the simplicity and intuitive nature inherent in the fluid theory.

There are ways to reduce the complexity of GCP, by deriving a fluid closure for the

pressure tensor and avoiding the use of the kinetic equation. The most famous closure is

known as the double-adiabatic law or the Chew-Goldberger-Low (CGL) law [15]. We will

introduce the CGL law in Section 1.2.6.

1.2.5 Collisions, plasma thermalization and pressure anisotropy

The MHD theory in Section 1.2.3 requires high collisionality for a fluid treatment. As

a consequence, the pressure tensor is reduced to a scalar pressure p. In contrast, the GCP

theory in Section 1.2.4 is collisionless, while the plasma pressure is different in the direction
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parallel/perpendicular to the magnetic field (pressure anisotropy). In this section, we will

examine the validity of these assumptions held by the MHD and GCP in a fusion plasma.

The ion-ion collision time, namely the averaged time for the direction ion motion to

change 90o, is given by [2]

τii =
12π3/2ε20

√
miT

3/2
i

ln ΛZ4e4ni
, (1.33)

where Z is the ion charge number and ln Λ is the Coulomb logarithm, a quantity insensitive

of the plasma parameters. In fusion experiments ln Λ ≈ 17. The definition of τii indicates

a complete energy mix between the parallel and perpendicular direction in the time scale

of τii and can be used to estimate the thermalization time. The electron-electron collision

time is much shorter than the ion-ion collision time due to their lighter weight, giving that

τee ∼
√
me

mi
τii � τii, (1.34)

where me/mi = 1840. Therefore, the electrons will be well thermalized in the time scale

of τii.

Although Eq. (1.33) is derived for a Maxwellian plasma, its order of magnitude should

still holds for a plasma with a different distribution, say a bi-Maxwellian plasma with the

distribution written as

fs(v⊥, v‖) =

(
m3
s

8π3T 2
⊥T‖

)1/2

exp

(
−
msv

2
⊥

T⊥
−
msv

2
‖

T‖

)
. (1.35)

Indeed, Ichimaru and Rosenbluth[16] derived the exact thermalization time scale for a

bi-Maxwellian plasma, given by

τi,Maxwellian =
30π3/2ε20

√
miT

3/2
eff

ln ΛZ4e4ni
, (1.36)

in which the effective temperature Teff is defined by

1

T
3/2
eff

=
15

4

∫ 1

−1
dµ

µ2(1− µ2)

[(1− µ)2T⊥ + µ2T‖]3/2
. (1.37)

In the limit of T⊥ = T‖ = Ti, Teff will reduce to Ti. The time evolution of temperature

now becomes
dT⊥
dt

= −1

2

dT‖

dt
= −

T⊥ − T‖
τi,Maxwellian

. (1.38)

In a D-D fusion plasma with ni = 1019m−3 and Ti = 1keV, τii ∼ 10−3s, much longer

than the typical time scale of an Alfvén wave (∼ 10−5s) and the time scale of a sound wave

(∼ 10−4s). Therefore, a collisionless treatment/anisotropic pressure is more appropriate

for Alfvénic plasma activities.

For activities on a longer time scale, i.e. equilibrium and transport, the plasma is

sufficiently thermalized due to the long confinement time. However, the presence of a

source from external heatings will introduce a high energy non-Maxwellian tail on the top

of the thermal bulk plasma, as introduced in Section 1.1.2. For example, after slowing
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down, the equilibrium distribution of neutral beam fast ions can be approximated by [2]

f(E,Λ) ∼ nbeam
1

E3/2 + E
3/2
c

exp

[
−(Λ− Λ0)2

∆Λ2

]
Θ(Ebeam − E), (1.39)

where nbeam the beam density, E the ion energy, Ec ≈ 19Te the critical energy for D-D

beam plasma, Λ = µB0/E the pitch angle, Λ0 the injection pitch angle, ∆Λ the pitch

angle spread, Θ(x) the step function, and Ebeam the injection energy. Equation (1.39) is

highly directional in Λ0, the injection pitch angle. Thus the beam pressure, and thereby

the total pressure, is highly anisotropic given a sufficient beam density.

1.2.6 Fluid closure problem

As described in Section 1.2.2, the number of equations of moment hierarchy is infinite:

the zeroth moment density is related to the first moment velocity, and then to the second

moment pressure, and so on. This hierarchy needs to be stopped at some level to close

the system: this is the fluid closure problem. There are usually two ways to find a

closure, either by truncating the hierarchy at an arbitrary level, or by proposing a physical

assumption which relates the highest order moment to the lower ones.

The Braginskii Equations [17] closes the two fluid equations by assuming a small deriva-

tion from the Maxwellian distribution. They are useful in modeling the long term evolution

of plasma equilibrium and transport in the collisional regime.

MHD uses the adiabatic gas law given by Eq. (1.19). The key assumption involved is

that the phenomena of interest (e.g. waves) in the plasma have a time constant τwave larger

than τii in Eq. (1.33), the time constant of thermalization through collisions, but smaller

than τheat, the time constant of heat conduction between neighbouring fluid elements.

Writing into equations, this is to say that

τii � τwave � τheat. (1.40)

This MHD adiabatic gas law is widely used in a variety of contexts. However, Eq. (1.40) is

not always satisfied in many of its applications. For instance as stated in Section 1.2.5, the

first half of Eq. (1.40) is not satisfied in a fusion plasma: the plasma pressure is usually

not isotropic. Nevertheless, the adiabatic gas law gives very useful insights into many

problems due to its simple and intuitive nature, and due to its versatility to choose the

index γ to fit particular results, ranging from isothermal (γ = 1) to adiabatic (γ = 5/3).

The double-adiabatic law, or the Chew-Goldberger-Low (CGL) law [15], is derived

from an entirely different perspective: the plasma is collisionless. Unlike the adiabatic

gas law, the parallel pressure and the perpendicular pressure in CGL are assumed to

do adiabatic work independently. If the assumption of a negligible heat flow holds, one

obtains
d

dt

(
p⊥B

ρ

)
= 0, (1.41)

d

dt

(
p‖

ρB2

)
= 0, (1.42)

which is valid when

τcol � τwave, τheat � τwave, (1.43)
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where τcol is the slowest collision frequency (τii for example), and τheat ∼ Lwave/vs, th,

with vs, th the thermal velocity of the fastest particle. The CGL law is consistent with the

pressure being anisotropic in a collisionless plasmas in a strong magnetic field. There are

nevertheless problems associated with the CGL law when Eq. (1.43) does not hold, mostly

when the heat flow terms are not negligible if the wave frequency is comparable or lower

than the thermal frequency [18, 19], especially for the electrons. As an improvement, one

can extend the applicability of CGL by treating electrons and ions differently, with the

former taken to be isothermal and the latter CGL.

The CGL law gives very different results from the MHD adiabatic gas law even when

the pressure is isotropic [20]. For instance, the ion sound wave frequency in these two

models is given by

ωISW, MHD = k‖

√
γp

ρ
, ωISW, CGL = k‖

√
3p

ρ
, (1.44)

with k‖ the parallel wave number and γ 6= 3. In order to extend the widely used MHD adi-

abatic gas law into the context when the pressure is anisotropic while retaining its simple

and intuitive nature, the following assumption can be made to construct the perturbed

pressure:

P̃ = p̃I, (1.45)

i.e. the perturbed pressure is isotropic, or we only take the isotropic part of the perturbed

pressure, where I is the unit dyad. The resulting fluid closure equation is given by

∂p̃‖

∂t
=
∂p̃⊥
∂t

= −Ṽ · ∇
(

1

3
p‖ +

2

3
p⊥

)
−
(

1

3
p‖ +

4

3
p⊥

)
∇ · Ṽ −

(
2

3
p‖ −

2

3
p⊥

)
b · (b · ∇Ṽ ),

(1.46)

with the name “single-adiabatic” (SA) closure [20]. The assumption of adiabaticity still

holds in the single adiabatic closure.

There are many other fluid closures such as the double-polytropic law [21], the 16-

momentum closure [22] and the truncation at higher order moments [23, 24]. Some kinetic

closures [25, 26] are also proposed to overcome the difficulty of fluid closure, with GCP

theory being one of them.

1.3 Plasma equilibrium and fast ion driven instabilities in

tokamaks

1.3.1 The Grad-Shafranov Equation (GSE) and magnetic coordinates

We can derive a second order differential equation to describe the plasma equilibrium

force balance in a tokamak in the context of MHD with an isotropic pressure. We now

use a cylindrical coordinate (R,ϕ,Z), and take the central vertical axis of the torus as the

symmetric axis of the coordinate. If we assume axisymetry in the toroidal direction ∇ϕ,

the magnetic field can be written as

B = ∇Ψ×∇ϕ+ F∇ϕ, (1.47)
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where we have also used ∇ · B = 0. We substitute Eq. (1.47) into the force balance

equation given by

0 = J ×B −∇p. (1.48)

By inspecting the ∇ϕ, ∇B and ∇Ψ direction of Eq. (1.48), it is possible to show that

F = F (Ψ), p = p(Ψ), and finally,

∇ ·
(
∇Ψ

R2

)
= −p′ − FF ′

R2
. (1.49)

Equation (1.49) is known as the Grad-Shafranov Equation, first derived by Grad [13]

and Shafranov [27]. It is usually solved with a fixed boundary condition which specifies

the shape of the plasma, or a free boundary condition, which specifies the external coil

currents. The solution Ψ = Ψ(R,Z) gives the poloidal field and flux surfaces (magnetic

surfaces) of the system, where ∇Ψ ·B = 0

Using Ψ as the radial coordinate, we can write the components of the magnetic field as

Bθ and Bϕ, where θ is the poloidal angle. However, in (Ψ, θ, ϕ) coordinates, the magnetic

field is not a straight line, i.e. Bϕ/Bθ is not a constant, causing inconvenience for further

stability treatments. There exists another set of curvilinear coordinates (Ψ, ϑ, ξ), in which

Bξ

Bϑ
=
B · ∇ξ
B · ∇ϑ

= q(Ψ), (1.50)

where q is the safety factor defined in Eq. (1.4) and is a function of Ψ only, while Bξ and Bϑ

are contravariant components of the magnetic field. These curvilinear coordinates are

called the magnetic coordinates. The magnetic coordinates are not unique. Some popular

choices include the Boozer coordinates [28] and the Hamada coordinates [29], with the

additional requirement ∇Ψ×B and J being straight, respectively. In this thesis, we will

be using the “symmetric coordinates” [30] where ξ = φ. Assuming isotropic pressure, the

relationship between θ and ϑ is given by

ϑ(θ) =
F (Ψ)

q(Ψ)

∫
Ψ

dl

R|∇Ψ|
, (1.51)

with the integration starting from the low field side mid-plane clockwisely facing the

direction of ∇ϕ.

1.3.2 MHD continuum

We now take the fluid equations and linearize them to get the plasma linear wave and

stability. We define the “displacement vector” as ∂ξ/∂t = Ṽ and ∂/∂t ∼ −iω. Next, we

substitute this definition into Eq. (1.9), (1.10), (1.17) and (1.21) and eliminate all other

variables, reaching a second order differential equation given by [9]

−ρω2ξ(x, t) = F(ξ), (1.52)

where the linear force operator F is given by

F(ξ) = −B × (∇×Q) + (∇×B)×Q−∇p̃, (1.53)

with

p̃ = −γp∇ · ξ − ξ · ∇p, (1.54)
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Q = ∇× (ξ ×B). (1.55)

Note that the MHD adiabatic gas law Eq. (1.19) is used here. By this way, we reduce

the system into three coupled differential equations, with the three components of ξ as

unknowns, thereby the system is closed. When the boundary conditions are specified, for

example for a rigid wall, ξ · n = 0 at the wall (n is the unit vector perpendicular to the

wall), and the radial component of ξ being zero on axis, the system defines an eigenvalue

problem of ω. It has been proved that the operator F is a self-adjoint operator [9, 31], so

the eigenvalues ω2 must be real: the system is either purely oscillatory, or exponentially

growing/damping.

There are two major points of view to solve the same problem: by solving the differ-

ential equation Eq. (1.52) directly, or by constructing a quadratic form and implementing

the variational principle. The latter method is more convenient in finding instabilities

(ω2 < 0), or to determine the boundary value of equilibrium quantities that lead to

marginal stability (ω2 = 0). On the other hand, the two points of view are equivalent in

finding the oscillatory solutions (ω2 > 0) [9]. Since the focus of this thesis lays more on

the oscillatory modes, we will use the point of view from the differential equations.

The MHD spectral theory [30] of an inhomogeneous plasma reveals the existence of

modes with discrete frequencies, as well as the continuous spectra, much like a quantum

mechanics system in solid state physics. In an axisymetric cylindrical plasma homogeneous

along the z axis, the coordinates (r, θ, z) are separable, i.e. the form of the solution is given

by ξ = ξ̂(r)eimθ+ikzz−iωt, and the modes with different mode numbers m and kz are not

coupled to each other. Continuous modes are present if either the radial pressure gradient

or the magnetic shear (dq/dr) is non-zero. When the frequency matches the local shear

Alfvén frequency or sound wave frequency given by

ω2 = k2
‖v

2
A = (m

Bθ
Bzr

+ kz)
2 B

2
z

µ0ρ
, (1.56)

or

ω2 = k2
‖v

2
S = (m

Bθ
Bzr

+ kz)
2 γpB2

z

(γp+B2)ρ
, (1.57)

the coefficient of the highest (second) order derivatives in Eq. (1.52) vanishes on a partic-

ular radius, say rres, and the corresponding solution ξ shows a singular behaviour around

rres. More specifically, ξr ∼ ln |r−rres| and ξθ, ξz ∼ 1/(r−rres). Using this unique property

of the continuous modes, a scan can be carried for all ω, m and kz to obtain the frequency

of all the continuous modes and the corresponding singular radius, namely the continuous

spectra, or the continuum. A typical shear Alfvén continuum of a cylindrical plasma is

shown in Fig.1.3 with the dashed lines.

If we ignore the effect of toroidicity, a tokamak can be viewed as a cylinder bending

to join the two ends together. The continuum in a tokamak will be similar to that of a

cylinder if we set k‖ = (m/q + n)/R0, with kz replaced by n/R0 in Eq. (1.56) and (1.57)

and q ≈ rBϕ/RBθ. Note that m and n are the poloidal and toroidal mode numbers,

respectively. However, in a tokamak, B ∼ 1/R and therefore the Alfvén frequency is not a

constant on flux surfaces, introducing a coupling between the neighbouring m and m+ 1

continuum. The coupling becomes the strongest on the flux surface where the frequencies

of these two branches coincide, forming a gap as shown in Fig.1.3. Besides toroidicity,

other effects may also induce a frequency gap at the crossing of two continuum branches,

including the effect of finite beta (pressure), and the ellipticity and triangularity of the flux
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Figure 1.3: Shear Alfvén continuum frequency as a function of radius with m = 4− 7 and n = 4,

for a cylinder (dashed lines) and a tokamak (solid lines). The gap induced by toroidicity is marked

between horizontal dashed lines. Image source: Heidbrink[32]

surfaces. These gaps are labeled in Fig.1.4, which shows typical continuum in a tokamak

and the zoo of fast ion driven instabilities.

Figure 1.4: Alfvén continuum frequency as a function of flux surface with n = 3 (dashed lines).

The beta, toroidicity, ellipticity and triangularity induced gaps are labeled in red fonts. The short

horizontal lines mark the frequency and radial localization of some fast ion driven instabilities

observed experimentally: kinetic ballooning modes (KBM), toroidicity-induced Alfvén eigenmodes

(TAE), kinetic toroidicity-induced Alfvén eigenmodes (KTAE), ellipticity-induced Alfvén eigen-

modes (EAE), triangularity-induced Alfvén eigenmodes (NAE), compressional Alfvén eigenmodes

(CAE) and ion cyclotron emission (ICE). Image source: Heidbrink[33]

When the frequency of another discrete mode hits the continuum at some radius, a
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mode-mode interaction will occur at that radius, transferring the energy from the discrete

mode to the continuum and eventually dissipating it, causing its amplitude to damp.

Usually, the physics of continuum damping cannot be captured by standard ideal MHD

methods: one needs to add non-ideal effects such as resistivity or FLR effects, or to

implement special treatments such as the singular finite elements or complex contour

integration (see Ref. [11, 34, 35] and references therein).

1.3.3 Fast ion driven instabilities

In fusion plasmas, the fast ions generated by external heating methods as well as

fusion reactions can drive one or many waves, making them unstable through the wave-

particle interaction. Wave-particle interaction is the phenomena that when a wave shares

the same phase velocity with a group of particles, the particles are static in the frame

moving with the wave, so they can be constantly accelerated or decelerated, allowing the

exchange of energy between the particles and the wave. The amplitude of the wave will

therefore increase or decrease over time depending on the particle distribution function.

In tokamaks, the speed of fast ions is usually comparable with or faster than the Alfvén

speed, allowing the fast ions to resonate with the Alfvén waves in tokamaks. Moreover,

there is free energy coming from a negative fast ion radial density gradient, or from a

positive energy gradient available to drive the wave. When the drive exceeds the damping

(including the continuum damping, the collisional damping, the radiative damping and/or

the ion Landau damping from the thermal ions), the mode will grow and be observed in

experiments. These instabilities can cause abnormal transport of fast ions, inducing fast

ion loss and thereby degrading the fast ion confinement and limiting plasma performance

[36]. Thorough theoretical and experimental investigation of the fast ion driven instabili-

ties is therefore crucial to the operation and the design improvement of existing and future

tokamkas. Figure 1.4 illustrates the zoo of these fast ion driven instabilities.

The background plasma can support a variety of shear Alfvén normal modes by itself,

as predicted by the MHD theory. There are three types [37] of modes carried by the back-

ground plasma: continuum, extremum and gap modes. Figure 1.5 shows the frequency

and radial mode structure of each type. As introduced in Section 1.3.2, the continuum

modes show a typical localized singular behaviour at the singular radius. The other two

types, on the other hand, have robust non-singular global structures. When a continuum

extrema is presented, a mode with discrete frequency can be found just below/above the

extrema as in Fig.1.5 (b). This is known as the extremum type. One of the famous ex-

amples is the reversed shear Alfvén eigenmodes (RSAEs) or Alfvén Cascades (ACs) [38],

having a radial peak at the reversal point of the q profile. Other extremum modes include

the beta-acoustic-induced and beta-induced Alfvén eigenmodes (acronym BAAE[39] and

BAE[40]), due to the extremes induced by Alfvén -acoustic coupling. It is also possible for

a global mode to exist in the continuum gaps, as depicted in Fig.1.5 (c) and known as gap

modes. The most commonly driven member of this class is the toroidicity-induced Alfvén

eigenmodes (TAEs)[41], residing in the toroidicity induced continuum gap. Other exam-

ples include the ellipticity-induced and triangularity-induced Alfvén eigenmodes (acronym

EAE and NAE, respectively[42]), corresponding to each gap induced by the named effect.

A fast ion driven instability could come from the above background plasma supported

modes, or modes that do not exist with only the bulk plasma, known as the energetic

particle modes (EPMs), whose frequency and mode structure are non-perturbatively de-

termined by the fast ions. In the shear Alfvén frequency range, the dominant damping
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Figure 1.5: A schematic classification of background plasma supported shear Alfvén modes, their

frequency (left) and radial mode structure (right). (a) A “continuum” mode with a singular radial

behaviour. (b) A “extremum type” global mode emerges from an extrema of the continuum with

reduced continuum damping. (c) A “couping type” global mode resides in the continuum gaps

with reduced continuum damping. Image source: Heidbrink[32]

mechanism is the continuum damping. The extremum modes and gap modes, residing

either at a continuum extrema or in a continuum gap, have a reduced continuum damp-

ing and can be driven unstable with less efforts. It is possible that the fast ion drive is

enough to overcome the strong damping of a continuum mode, resulting in an instability

to develop. A non-singular radial mode structure is usually seen when the fast ions are

taken into account, with the peak located at where the fast ion drive is the strongest [43].

They are therefore categorized as EPMs, with the precessional fishbone being one of the

examples [44]. Finally, there are other EPMs that are not emerging from a shear Alfvén

continuum, such as the energetic geodesic acoustic modes (EGAMs) [45, 46].

The rough classification of fast ion driven instabilities into background supported

modes and EPMs is based on their linear properties. Their nonlinear development may

sometimes become more complicated: for example, a chirping EPM may emerge from

the bulk ion supported modes such as TAEs after a nonlinear Bernstein-Greene-Kruskal

(BGK) mode [47] is formed from nonlinear wave-particle interactions [48]. A theory ex-

planation of such behaviours is provided by the Berk-Breizman model [49, 50, 51, 52, 53].

1.3.4 The ideal MHD fast ion driven instabilities tool chain

A suite of numerical tools are routinely used to model the experimentally observed

fast ion driven instabilities in complicated tokamak geometries. The different components

in this tool chain, as well as the data flows, are shown in Fig.1.6. First, experimental
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data such as the external magnetics, the plasma current, and profiles from the advanced

diagnostics (such as the magnetic pitch angle profile from the Motional Stark Effects [54])

are used as constraints to the free-boundary GSE equilibrium reconstruction code EFIT

[55]. EFIT calculates a least square fit of the profiles and the flux surfaces Ψ to the data

with the force balance satisfied, through a current-field iteration. This first “guess” of

the flux surfaces, along with other data like the ne profile from the Thomson Scattering

[56], are used in the transport code TRANSP [57] to estimate the background plasma

and fast ion pressure profiles. In some cases, the pressure profile is in turn fed back into

EFIT as kinetic constraints. With these additional constraints, improved estimation of

flux surfaces can be constructed.

Figure 1.6: The isotropic ideal MHD tool chain from equilibrium, wave mode to wave-particle

interaction.

The fix-boundary equilibrium code HELENA[58] is a bridge step between EFIT and

further stability treatment. It takes the EFIT last closed flux surface and flux functions

as input and solves the GSE again in the magnetic coordinates. Such a design allows HE-

LENA to obtain the metric elements of the magnetic coordinates (symmetric coordinates)

in high precision. On the other hand, HELENA is also capable of calculating equilibria

with analytically prescribed flux functions so as to carry on parameter scans.

Using these equilibrium profiles and the metrics calculated by HELENA, the plasma

normal mode code MISHKA[59] solves the ideal MHD equations Eq. (1.52) as an eigen-

value problem. The outputs of MISHKA are the radial mode structure and its frequency,

for a given toroidal mode number n and a range of polodial mode number m, containing

both the continuous modes and the discrete modes. Corresponding continuum solvers,

namely CSCAS[60] and CSMISH, are also available to obtain the continuum frequency on

each flux surface.

Finally, the wave-particle interaction code HAGIS[37, 61] evolves the nonlinear ampli-

tude and frequency of the mode calculated by MISHKA, based on the equilibrium provided

by HELENA and fast ion distribution function provided by TRANSP. It launches a number

of markers, following their trajectory in phase space under the equilibrium and perturbed

fields, and adds their contribution to the fields. One can then compare the growth rate,

saturation level and chirping behaviours of the mode to the magnetic spectragram, or syn-

thetic fast ion diagnostics to understand the physics of wave-particle interaction. Further

studies can also be carried out to estimate the fast ion losses as a consequence of wave

activities.
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1.3.5 Geodesic acoustic modes and energetic geodesic acoustic modes

The geodesic acoustic modes (GAMs) are axisymmetic modes found in a toroidally

confined plasma resulting from finite plasma compressibility and the geodesic curvature

of magnetic field lines [62]. They possess common features of a zonal flow: the radial

electric field perturbations are poloidally and toroidally symmetric, along with coupled

m = ±1, n = 0 density/pressure perturbations. GAMs have caught the attention of

the fusion community for the important roles they can play in suppressing turbulence

transport, enhancing the confinement of the plasma, and ultimately, helping to achieve

the long term goal of fusion energy [63, 64, 65, 66].

There are two major types of GAMs in toroidal fusion devices. The first type of GAMs

are edge coherent modes observed in a number of experiments (see the topical review [67]

and references therein, and [68, 69] for recent results on DIII-D and MAST). They are n =

0 fluid continuum and are excited by the nonlinear interaction with turbulences [70, 71].

The name “conventional” (or “standard”) GAMs is given because the mode frequency were

found to scale with ωGAM ∼
√
γiTi + γeTe +O(q−2), verifying the prediction of the fluid

theory [62]. The coefficients γi and γe are adiabatic indexes and given by γi = γe = 5/3 in

MHD. Later, calculations based on the kinetic theory [72, 73] reveal the adiabatic indexes

to be γi = 7/4 and γe = 1 in a collisionless plasma. These indexes are recently recovered in

fluid theory [74, 75] by the implementation of the CGL closure on ions and the isothermal

closure on electrons, assuming that the ion perpendicular and parallel pressure are doing

work independently in the limit of the safety factor q →∞, where the GAM frequency is

far from the thermal ion transit frequency.

The derivation of the conventional GAM in MHD can be found in Winsor et al [62]

and is briefly given as follows with the equilibrium current and pressure gradient ignored.

After taking the cross product with B on both sides, the equation of motion Eq. (1.5)

becomes

−ρω2ξ ×B = ∇(γp∇ · ξ)×B − J̃B2 + (J̃ ·B)B. (1.58)

We now take the perturbed electric field to be m = n = 0, i.e. E = −∇φ(Ψ). Using Eq.

(1.21) and the definition of ξ, we reach

ξ =
i

ω

B ×∇φ
B2

. (1.59)

Note that we have ignored the parallel component of ξ which is responsible for the GAMs’

coupling to sound waves. Substituting Eq. (1.59) into Eq. (1.58), we get

J̃ − (J̃ · b)b = iρω
∇φ
B2

+
i

ω
∇
(
γp∇φ · ∇ × B

B2

)
×
(
∇× B

B2

)
. (1.60)

Taking the divergence of both sides and using ∇ · J̃ = 0, the quasi-neutrality condition,

Eq. (1.60) is transformed into

ω2∇ · ρ(Ψ)

B2
∇φ− iω∇ · [(J̃ · b)b] = ∇ ·

[(
γp(Ψ)∇φ · ∇ × B

B2

)
∇× B

B2

]
. (1.61)

We will reach finally after a flux surface average that

φ′(Ψ)

[
γp

ρ

〈(
∇Ψ

|∇Ψ|
· ∇ × B

B2

)2
〉〈

1

B2

〉−1

− ω2

]
= 0, (1.62)
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with 〈· · · 〉 indicating flux surface averages. The solutions of Eq. (1.62) are given by

φ′ = δ(Ψ−Ψ′), ω2 = ω2
GAM(Ψ′), (1.63)

where ω2
GAM(Ψ′) equals to the first term in the bracket of Eq. (1.62). In a large aspect

ratio, low beta and circular cross section tokamak, ω2
GAM(Ψ′) is approximately given by

ω2
GAM(Ψ′) =

2γp(Ψ′)

ρ(Ψ′)R2
0

. (1.64)

The second type of GAM is associated with injected beam particles, with its first

experimental observation quoted in Fig.1.7 [45]. Figure 1.7 (a)-(c) show a turn-on of the

mode right after the beam is switched on. Bursting and chirping n = 0 nonlinear signal is

observed on the spectragram, while each burst leads to apparent fast ion losses (a decrease

in the neutron signal). In Fig.1.7 (d), the radial extent of the mode is measured with beam

emission spectroscopy, showing its localization to be at mid-radius. It was initially very

confusing since the mode frequency is at half of the local conventional GAM frequency,

as shown in Fig.1.7 (f). Later, a kinetic model was developed by Fu [46] proving that the

mode is indeed a GAM. But instead of supported by the bulk plasma only, it corresponds

to an EPM, and was given the name “energetic geodesic acoustic modes (EGAMs)” since

its frequency and growth rate are non-perturbatively determined by the fast ions.

Still, one puzzle remains unsolved. In nearly all the kinetic theories of EGAM, the

modes are claimed to be driven unstable by the wave-particle interaction, which, however,

cannot explain its immediate turn-on right after the beam switches on: the positive slope

needed to drive the mode has not yet developed. This puzzle is addressed in this thesis

using a fluid treatment.

1.4 Aim and structure of this thesis

Besides the problems of parallel dynamics and the fluid closure, their is another weak

point of the fluid theories: they cannot capture the physics of wave-particle interaction,

owing to the fact that the wave-particle interaction is only affecting a small fraction of

particles near the resonance, while the fluid theory deals with the macroscopic quantities.

Explicitly, the fluid treatment does not feature a resonance condition. Moreover, the

energy of the fast ions is usually much higher than the “bulk” plasma, i.e. the thermalized

plasma that are confined for sufficiently long time. They may have very distinct properties

and behaviour compared to the bulk. As a result of these two considerations, most of the

existing theories use the kinetic description for the fast ions, while the bulk plasma is

modeled either kinetically (full kinetic description), or by MHD (hybrid description).

Nevertheless, treating the externally heated plasmas as fluids is possible, but its value

is often underestimated or overlooked. A fluid description can simplify the problems that

may otherwise be complicated to solve, meanwhile providing intuitive physics insights to

understand them in a variety of cases.With a careful considerations of applicability range,

it can be used in modeling various aspects of a externally heated fusion plasma, with

significant physics insights.

In Chapter 2-4, we will describe the fast ions and the bulk plasma as a single fluid,

and study the plasma equilibrium, stability and wave-particle interaction, mainly from

the perspective of the pressure anisotropy induced by fast ions originated from external

heatings, and its implication on fast ion driven instabilities. From the aspect of the
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Figure 1.7: Experimental data of EGAM activities observed on DIII-D. (a) The plasma current

and the beam power. (b) Mirnov coil signal (black) and neutron rate (red). (c) Magnetic spectra-

gram show bursting and chirping n = 0 wave activities. (d) The density fluctuation level measured

by the beam emission spectroscopy, and the q profile vs major radius R . (e) The electron density,

electron and ion temperature profile. (f) The calculated conventional GAM frequency versus the

normalized flux surface, with the red shade indicating the frequency range of the observed mode.

Image source: Nazikian et al [45].

Figure 1.8: The anisotropy-extended ideal MHD tool chain from equilibrium, wave mode to

wave-particle interaction.

numerical tools, we have developed an extended version of the MHD tool chain with

pressure anisotropy. A schematic plot of the new tool chain is shown in Fig.1.8. From the

aspect of physics, we have found that the inclusion of pressure anisotropy is increasingly

important in machines with lower aspect ratio and stronger external heatings: it may affect
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significantly the q profile, the radial current, the TAE mode frequency and structure, the

growth rate and its nonlinear saturation level. In Chapter 5 and 6, a three-fluid theory is

used: the electrons, the bulk ions, and the fast ions from neutral beam injection. We will

show its application to the energetic geodesic acoustic modes (EGAMs), demonstrating

the capacity of a fluid treatment in resolving EPMs, meanwhile addressing the puzzle of

the EGAMs’ immediate turn-on in experiments. It is found that the EGAMs can transit

between a reactive fluid instability and a wave-particle interaction driven (dissipative)

instability which is otherwise confused in its previous kinetic theories.

The two major parts of this thesis share the same motivation, as well as the same

bigger picture. That is, to explore the possibility and the physics discovery of describing

the externally heated tokamak plasmas as a fluid/fluids, and to shed lights on physical

phenomena that routinely described kinetically. This forms the aim of the thesis.

The thesis is organized as follows.

• Chapter 2 analyses the impact of pressure anisotropy on plasma equilibria, introduc-

ing the Grad-Shafranov fix-boundary solver HELENA+ATF. The characteristics of

an anisotropic equilibrium is studied with MAST-like profiles and boundaries, while

the performance of using an isotropic model on an anisotropic equilibrium is evalu-

ated.

• Chapter 3 develops the normal mode stability solver MISHKA to incorporate the

physics of pressure anisotropy, with different considerations of fluid closure. The

plasma continuum, and the idea internal kink mode, are investigated using this new

code.

• Chapter 4 completes the final part of the tool chain, by driving a wave-particle

interaction calculation for an anisotropic plasma. The tools developed in Chapter 2

and 3 are utilized to compute the equilibrium and wave field for a highly anisotropic

MAST discharge.

• Chapter 5 derives the local EGAM dispersion relationship from basic fluid equations.

The unstable solutions of the dispersion relationship show agreement with the kinetic

theory, and are interpreted as reactive two-stream-like instabilities.

• Chapter 6 extends the local reactive EGAM theory in Chapter 5 by adding the fast

ion FOW effects, and gives the radial model structure, but still stays in the fluid

picture.

The appendices consist some of the supplementary materials and some of my other

works that are not relevant to the topic.

• In Appendix A, detail derivation of Chapter 5 is provided.

• An anisotropic model for a linear pinched device and the application on the Magne-

tized Plasma Interaction Experiment (MAGPIE) is reported in Appendix B.



Chapter 2

Impact of anisotropy pressure on

tokamak equilibria

Abstract

Beam injection or ICRH induces pressure anisotropy. The axisymmetric

plasma equilibrium code HELENA has been upgraded to include anisotropy

and toroidal flow. With both analytical and numerical methods, we have

studied the determinant factors in anisotropic equilibria and their impact on

flux surfaces, magnetic axis shift, the displacement of pressures and density

contour from flux surface. Their differences from isotropic cases are almost

linear functions of anisotropy. With p‖/p⊥ ≈ 1.5, p⊥ can vary 20% in a

MAST like equilibrium. We have also re-evaluated the widely applied MHD

approximation to anisotropy in which p∗ = (p‖+p⊥)/2, the average of parallel

and perpendicular pressure, is taken as the approximate isotropic pressure.

We find that in a MAST shot with p‖/p⊥ ≈ 1.25, isotropic and anisotropic

inference have a 4.5% difference in toroidal field but a 66% difference in poloidal

current.

2.1 Introduction

Auxiliary heatings, such as neutral beam injection (NBI) and ion cyclotron resonance

heating (ICRH), are widely implemented in modern tokamaks. Unlike Ohmic heating,

NBI and ICRH generate a large population of fast ions. The NBI induced energetic ions

mainly come with a large energy parallel to injection, while ICRH heats the ions into

higher velocities perpendicular to magnetic field.[36] The distribution functions of these

fast ions in phase space are thus distorted into anisotropic forms with p⊥ 6= p‖, where p⊥
or p‖ refers to the total pressure of both the thermal and the fast population perpendicular

or parallel to the magnetic field. These heating methods also drive plasma rotation. The

resulting magnitude of anisotropy in a tokamak can be very large according to recent

studies. In JET, anisotropy magnitude reaches p⊥/p‖ ≈ 2.5 [76] with ICRH. In MAST,

the beam pressure reaches p⊥/p‖ ≈ 1.7 during NBI heating [77].

However, in the magnetohydrodynamic(MHD) description of plasma, pressure is as-

sumed to be isotropic. Three questions are raised immediately. How is an anisotropic equi-

librium different from an isotropic one? How accurate is the MHD model for anisotropic

equilibria? How does the change in equilibrium affect the further study of a plasma (such

as stability and transport)?

23
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The theory of tokamak anisotropic equilibrium has been studied by many authors

[13, 78, 79, 80, 81]. One basic result is that the two pressures p‖,⊥ and the density ρ

are no longer flux functions [82, 83, 84]. At the same time, anisotropy could add to or

subtract the magnetic axis outward shift (Shafranov-shift [85]) [83, 86, 87]. The latter

result has been confirmed by numerical code FLOW [88]. Some authors also find the

experimentally inferred equilibrium assuming single pressure and anisotropic pressure can

be quite different [76, 77, 89].

In this work, we address the first two questions with analytical and numerical ap-

proaches. We show how p‖, p⊥ and the “nonlinear” part separately contribute to the

force balance and deviate from flux functions. We also answer the second question of

what problem a scalar pressure model will lead to in equilibrium reconstruction, and its

dependency on aspect ratio and the magnitude of anisotropy.

This work is organized as follows: In Section 2.2, the anisotropic and toroidal flow-

ing modified Grad-Shafranov equation we use in our analytical and numerical study is

derived and presented. Section 2.3 briefly describes the numerical methods and the code

HELENA+ATF. The features of an anisotropic equilibrium are studied in Section 2.4.

Section 2.5 evaluates the widely used MHD scalar pressure approximation to anisotropic

pressure.

2.2 Grad-Shafranov Equation with anisotropic pressure and

toroidal flow

2.2.1 Basic Equations

Our assumptions of plasma equilibrium are based on guiding center plasma theory

(GCP) [13, 79] with ideal MHD Ohm’s law. The basic equations are (in S.I. units):

ρ(u · ∇u) +∇ · P = J ×B, (2.1)

∇×B = µ0J , (2.2)

∇ ·B = 0, (2.3)

∇×E = 0, (2.4)

E + u×B = 0, (2.5)

P = p⊥I +
∆

µ0
BB, ∆ ≡ µ0

p‖ − p⊥
B2

, (2.6)

where ρ is the mass density, u the single fluid velocity, P the pressure tensor, J the

current density, B the magnetic field, E the electric field, and µ0 the vacuum permeability

constant. Equation (2.1) is the GCP force balance. Equation (2.2), (2.3) and (2.4) are

Maxwell equations. Equation (2.5) is the ideal Ohm’s law. Equation (2.6) is the GCP

assumption of anisotropic pressure, which assumes the pressure tensor consists of two

components, p⊥ and p‖, with I the identity tensor. The fast ion finite orbit width (FOW)

effects are ignored in our fluid model. FOW effects can be important for tokamaks with

fast ion heating, especially in tight aspect ratio tokamaks. For example, the fast ion orbit

width can be as large as 20% of the minor radius in MAST with parallel on-axis beam.

The inclusion of these effects in equilibrium requires a kinetic/gyro-kinetic treatment of

the fast ions (e.g. the inclusion in fast ion currents and thus the equilibrium, when fast
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ion proportion is low [90, 91]).

With axisymmetric cylindrical coordinate system (R,Z, ϕ) and Eq. (2.3), B is written

as

B = ∇Ψ×∇ϕ+RBϕ∇ϕ, (2.7)

where Ψ is the poloidal magnetic flux and Bϕ the toroidal magnetic field. Current density

in toroidal and poloidal direction can be deduced from the Ampere’s Law (Eq. (2.2)) :

µ0Jϕ = −R∇ · ∇Ψ

R2
, µ0Jp = ∇(RBϕ)×∇ϕ. (2.8)

If only the toroidal part of flow is important, with ∇ × (u ×B) = 0 from Eq. (2.4)

and (2.5), the form of u becomes

u = Ω(Ψ)R2∇ϕ, (2.9)

in which Ω is the toroidal angular velocity and a flux function for zero resistivity.

Two different forms of toroidal flow and anisotropic modified Grad-Shafranov equations

(modified GSE) [12, 85] can be derived from the above equations using different variables.

The pressure form of the GSE has pressures as a function of three variables (R,B,Ψ) :

p‖,⊥ = p‖,⊥(R,B,Ψ) [12, 92, 81, 82, 87]. The enthalpy form uses ρ as a variable instead

of R, which means p‖,⊥ = p‖,⊥(ρ,B,Ψ) [92, 83, 88].

2.2.2 Grad-Shafranov Equation in the form of pressure

To obtain the modified GSE in the pressure form, the momentum equation is rear-

ranged into a form, as mentioned by many authors (for example [13, 92, 78, 83, 84, 88])

:

µ0∇p‖ = ∆∇B
2

2
+∇× [(1−∆)B]×B + µ0ρΩ2R∇R. (2.10)

Substituting p‖ = p‖(R,B,Ψ) into Eq. (2.10), the component of Eq. (2.10) in ∇ϕ, ∇B,

∇R and ∇Ψ directions each gives

F (Ψ) ≡ RBϕ(1−∆), (2.11)(
∂p‖

∂B

)
Ψ,R

=
∆B

µ0
, (2.12)

(
∂p‖

∂R

)
Ψ,B

= ρRΩ2, (2.13)

∇ · (1−∆)∇Ψ

R2
= − FF ′

(1−∆)R2
− µ0

(
∂p‖

∂Ψ

)
R,B

. (2.14)

We note that F = RBϕ(1−∆), instead of RBϕ, becomes a flux function. The restrictions

for p‖(R,B,Ψ) are Eq. (2.12) and (2.13): these also guarantee the parallel force balance

(multiplying Eq. (2.10) by B) is satisfied. In the limit of no toroidal flow, Eq. (2.12) can

also be deduced from the parallel force balance. Finally, Eq. (2.14) is the modified GSE

for anisotropic and toroidally rotating system.
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2.2.3 Grad-Shafranov Equation in the form of enthalpy

A detailed derivation of the enthalpy form of the modified GSE can be found in [92,

83, 88]. Starting from the energy conservation equation, the relationships between the

enthalpy W (ρ,B,Ψ) and plasma pressures as well as rotation are derived. A new flux

function H, which defines as

H(Ψ) = W (ρ,B,Ψ)− 1

2
Ω2R2, (2.15)

is inferred from these relationships.

In order to close the set of equations, a certain equation of state is needed. In our

work, the bi-Maxwellian distribution model is chosen. This is the simplest distribution

function that will capture anisotropy. The two pressures are now products of plasma

density and the parallel and perpendicular temperatures, and the thermal closure chosen

is that parallel temperature is a flux function:

p‖(ρ,B,Ψ) = ρT‖(Ψ), p⊥(ρ,B,Ψ) = ρT⊥(B,Ψ). (2.16)

The two temperatures T‖ and T⊥ are in units of energy per mass. Inserting the bi-

Maxwellian assumptions yields a expression for W (ρ,B,Ψ) and T⊥(B,Ψ) [92, 83], written

as

W (ρ,B,Ψ) = T‖ ln
T‖ρ

T⊥ρ0
, ρ = ρ0

T⊥
T‖

exp
H + 1

2R
2Ω2

T‖
, (2.17)

T‖ = T‖(Ψ), T⊥ =
T‖B

|B − T‖Θ(Ψ)|
, (2.18)

with ρ0 a constant and a new flux function Θ indicating the magnitude of anisotropy.

Considering the ∇Ψ direction of Eq. (2.10) will give the enthalpy form of the modified

GSE :

∇ · (1−∆)∇Ψ

R2
= − FF ′

(1−∆)R2

− µ0ρ

[
T ′‖ +H ′ +R2ΩΩ′ −

(
∂W

∂Ψ

)
ρ,B

]
,

(2.19)

with F defined by Eq. (2.11). The system is specified by five functions {T‖, H,Ω, F,Θ} of

Ψ and the boundary conditions on Ψ.

The pressure form of the modified GSE (Eq. (2.14)), when closed with Eq. (2.18), is

equivalent to the enthalpy form of the modified GSE. The enthalpy form of the modified

GSE with bi-Maxwellian assumption is numerically solved. We have used the pressure

form of the modified GSE to explore physics of anisotropic plasma.

2.3 Numerical scheme

Based on the modified GSE in Eq. (2.19), we altered and updated the axisymmet-

ric plasma equilibrium code HELENA [93] to its anisotropy and toroidal flow version

HELENA+ATF. Since the internal physical assumptions and equations are completely

changed, we have rewritten most of its matrix element calculations and post-processing,

but have retained subroutines for isoparametric meshing. HELENA+ATF uses the same

isoparametric bicubic Hermite elements as HELENA [30, 93].
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Equation (2.19) is solved in its weak form. That is, with the spatial discretization

in Ref. [30] and [93], the PDE system is transformed into a linear algebra problem by

integrating both sides after multiplied by each Hermite element. Here, a Picard iteration

is used to solve the system. The flux functions and ∆ of n’th iteration is used to calculate

the flux surfaces Ψ(R,Z) of (n+ 1)’th iteration.

If p‖ > p⊥, 1 − ∆ can go from positive to negative. In this case, the shear Alfvén

wave becomes purely growing [19], labeled as the firehose instability. On the other hand,

if p‖ < p⊥, the mirror instability may occur, with the non-oscillating mode becoming

unstable [19]. The firehose and mirror stability criteria given by [13, 94] are

1−∆ > 0, (2.20)

1 +
µ0

B

∂p⊥
∂B

> 0, (2.21)

which guarantee Eq. (2.19) to be elliptic all the time [12, 83]. These criteria are also

sufficient conditions for the solvability (see Appendix 2.7) of the four interdependent vari-

ables p‖, p⊥, B and ∆ (Eq. (2.6) (2.7) and (2.11)). In this work, we only discuss equilibria

within these stability criteria. With bi-Maxwellian Eq. (2.18), the stability criteria are

written as
3βE + 2 +

√
(3βE + 2)2 + 12βE
6βE

>
p⊥
p‖

>
3βE − 2

3βE + 4
, (2.22)

with βE = µ0(4p⊥/3 + 2p‖/3)/B2 the local ratio of the kinetic energy to the magnetic

energy. Even in a tokamak with βE = 0.4, we still have the upper limit 3 and lower limit

below zero. Therefore, these stability criteria are satisfied in most scenarios, although the

mirror instability criterion may be approached in high β tokamaks with strong ICRH or

perpendicular NBI heating.

In order to benchmark force balance convergence of HELENA+ATF, we consider a test

case with constant F and Θ profiles, linear T‖ profile (∼ 1−Ψ), and quadratic H and Ω2

profiles(∼ (1−Ψ)2). The plasma boundary is set to have elongation κ = 1.2, triangularity

δ = 0.2 and inverse aspect ratio ε = 0.3. In anisotropic test cases, p‖/p⊥ = 1.5 on the

axis, while in test cases with toroidal flow, Ω̄2/T̄‖ = 0.5 on the axis.
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Figure 2.1: (a) The average force balance error of all grid cells and (b) maximum force balance

error in four test cases. NR=NP=N is the number of radial and poloidal grid points. Force balance

error per cell means ∆F/F = 2|RHS-LHS|/|RHS+LHS| of Eq. (2.19) in percent. Average force

balance is calculated by
∑

(∆F/F )/N2.

Figure 2.1 shows the average force balance error of all grid cells and the maximum
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force balance error in four test cases. The force balance error decreases logarithmically

as grid resolution increases. To explain the difference between Fig. 2.1 (a) and (b), we

mention that the force balance error is close to zero near the core but reach its maximum

at the boundary. This is not only because the grid is more concentrated at the core, but

also a sharp boundary approaching an X point or triangular point will cause numerical

degrading with a singular Jacobian.

Once the equilibrium is computed, HELENA+ATF also provides high precision coor-

dinate information for stability codes. The solution of the modified GSE is mapped into

the straight field line coordinate (s, ϑ, ϕ), which is defined as

s =
√

Ψ/Ψ0, ϑ(θ) =
F (Ψ)

q

∫
Ψ

dl

R(1−∆)|∇Ψ|
, (2.23)

where q is defined as

q(Ψ) =
F (Ψ)

2π

∮
Ψ

dl

R(1−∆)|∇Ψ|
. (2.24)

The metric coefficients gij and Jacobian J can then be calculated.

2.4 The features of anisotropic equilibria

There are three major effects of anisotropic pressure that we can infer from our model

and Eq. (2.19):

(i) p⊥ and p‖ contribute separately to the toroidal current;

(ii) the term, “1−∆” inside the LHS operator will modulate the poloidal flux and form

a new “nonlinear current”;

(iii) pressures and density contours no longer lie on surfaces of constant poloidal flux.

Effect (i) and (ii) will be explained in Section 2.4.1, and (iii) in Section 2.4.2. In this

section, flow is turned off unless otherwise specified. We choose profiles that represent the

general shape and trend of the EFIT-TENSOR reconstructed profiles with TRANSP[57]

constraint of MAST discharge #18696 at 290ms [92]. They are

T (Ψ) = C0(1−Ψ)2 + C1, H(Ψ) =
C0

2
(1−Ψ)3 + C2,

F (Ψ) = F0, Θ(Ψ) = Θ0, (2.25)

where C0, C1, C2, F0 and Θ0 are adjustable constants. Constants C1 and C2 are small

values to make density and current profiles vanish at the plasma edge. By varying F0, we

can adjust q0. The parameter Θ0 is associated with the magnitude of anisotropy.

For these profiles we examine four equilibrium configurations. Equilibrium A is guided

by a MAST like boundary with triangularity δ = 0.4, elongation κ = 1.7 and inverse

aspect ratio ε = 0.7. Anisotropy of the case is chosen to be p‖/p⊥ ≈ 1.5 at core, with

a monotonic q profile and q0 ≈ 1. Equilibrium B examines the dependence with aspect

ratio: ε is changed to 0.3, and F0 adjusted to leave q0 unchanged. Equilibrium C examines

the isotropic limit: Θ0 is set to zero, and F0 adjusted to leave q0 unchanged. Finally,

equilibrium D examines the impact of toroidal flow, with Ω2 ∼ (1 − Ψ)3, such that the

ion thermal Mach number Mtϕ peaks at 0.7 on axis and vanishes at the edge, where
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Mtϕ = vϕ/
√
kBTi/mi and Ti is the ion temperature. This is the typical upper limit of

toroidal flow in MAST [95]. In all cases anisotropy peaks at the core due to the flat Θ

profile we have chosen. Table 2.1 shows parameters of these equilibria.

Table 2.1: Parameters of equilibrium A, B, C and D.
Equilibrium ε q0 ∆ Anisotropy Flow

A 0.7 1.04 5.0% p‖/p⊥ ≈ 1.5 none

B 0.3 1.04 1.5% p‖/p⊥ ≈ 1.5 none

C 0.3 1.01 0.0% none none
D 0.7 1.05 0.0% none Mtϕ ≈ 0.7 on axis

2.4.1 Toroidal current decomposition

In a cylindrical plasma with straight field lines and infinite length, the perpendicular

force balance is determined by p⊥. In a tokamak, there is a p‖ contribution [87] to per-

pendicular force balance. If flow is ignorable, we can rewrite Eq. (2.14) and decompose

Jϕ as

µ0Jϕ = µ0R sin2 α

(
∂p‖

∂Ψ

)
B︸ ︷︷ ︸

Jp‖

+µ0R cos2 α

(
∂p⊥
∂Ψ

)
B︸ ︷︷ ︸

Jp⊥

+
1−∆

2R

(
∂(RBϕ)2

∂Ψ

)
B︸ ︷︷ ︸

Jtf (toroidalfield)

− R∇ · ∆∇Ψ

R2︸ ︷︷ ︸
Jnl(nonlinear)

, (2.26)

where α is the field pitch angle, i.e. tanα ≡ Bp/Bϕ, with Bp the poloidal magnetic field.

The flux surface is determined by Jϕ through Eq. (2.8). The four contributing terms,

Jp‖ , Jp⊥ , Jtf and Jnl are identified here. This equation shows that the balance of Jp⊥ and

Jp‖ is determined by the pitch angle α.
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Figure 2.2: Contribution of each component to Jϕ across the mid-plane in (a) equilibrium A with

ε = 0.7, (b) equilibrium B with ε = 0.3. Shaded areas with different gray levels indicate different

components. Maximum of Jϕ is normalized to unity.

Figure 2.2 shows the decomposition of Jϕ along the mid-plane for equilibrium A and

B. These two equilibria have similar profiles and their major difference is the aspect ratio.

In both cases, Jϕ is dominated by Jp⊥ and Jtf , which roughly equal. The Jp‖ component
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is zero on the magnetic axis, consistent with sin2 α = B2
p/B

2 and Bp = 0 on axis. For a

low β plasma, sin2 α = B2
p/B

2 ∼ ε2/q2. We would thus expect, and observe, an increasing

contribution from Jp‖ with increasing ε. For ε = 0.7, Jp‖ peaks at 20% on the low field

side. Therefore, if the contribution of p‖ is ignored, or in other words, attributed to p⊥,

the current profile, and thus the q profile will be changed up to 10% with p‖/p⊥ ≈ 1.5.

Like Jp‖ , we observe Jnl scales with ε, but the reason is different. The change in Jnl with

ε is an artifact: it is a consequence of preserving q0.

Figure 2.3 explores the on-axis contribution of Jnl to Jϕ with changing anisotropy.

It shows that Jnl linearly depends on ∆, but has no dependency on p‖/p⊥, consistent

with Eq. (2.26). The result stresses that for analytic working and numerical codes in

which ∆ = 0 approximation is used but anisotropy retained, care should be taken when

anisotropy appears along with β above a few percent, as the effect of this approximation

is to delete the nonlinear current.
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Figure 2.3: The contribution of nonlinear current Jnl to total toroidal current Jϕ in percent as

a function of ∆. Different markers indicate different magnitude of anisotropy on axis.

Inspection of Fig. 2.2 and 2.3 shows that at large aspect ratio and low ∆, Jϕ ≈
Jp⊥ + Jtf . Thus, we would expect the global magnetic and current parameters to be

insensitive to other changes, if p⊥ and RBϕ profiles remain fixed. To demonstrate this, we

have examined the change in global parameters with changing ξ = 2(p⊥−p‖)/(p⊥+p‖), but

fixed flux surface average profiles 〈ρ〉, 〈RBϕ〉 and 〈p⊥〉 about isotropic equilibrium C, with

“· · ·” the volume average operator and 〈· · · 〉 the flux surface average operator. During the

scan, we change Θ0 and adjust T,H and F profiles to keep the above flux surface average

profiles identical to equilibrium C. The percentage change of global parameters is recorded

in Fig. 2.4(a), which shows that with the exception of Shafranov-shift (See Section 2.4.2),

other global parameters do not change much. This confirms the dominant role of Jp⊥+Jtf
in large aspect ratio tokamaks. For a comparison, in Fig. 2.4(b), we keep 〈p∗〉 instead

of 〈p⊥〉, with p∗ = (p‖ + p⊥)/2 the standard MHD isotropic pressure approximation (See

Section 2.5). As shown in Fig. 2.4(b), all global parameters will change significantly in

the magnitude of ξ. The result shows that 〈p⊥〉 is much better than 〈p∗〉 to retain global

parameters, if 〈ρ〉 and 〈RBϕ〉 are also unchanged.

2.4.2 Deviation from flux function

Impact on pressure and density

It is clear that with the isotropic assumption p‖ = p⊥ = p and static assumption, we

have ∇p ·B = 0, which means pressure is a flux function. But now with the additional
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Figure 2.4: The change of global parameters: Shafranov-shift(∆s), q0, li (Eq.(2.32)), total flux,

total current due to the changing magnitude of anisotropy based on equilibrium C, if the following

quantities are hold unchanged for each flux surface: (a) 〈p⊥〉, 〈ρ〉 and 〈RBϕ〉, (b) 〈p∗〉, 〈ρ〉 and

〈RBϕ〉, For instance, the change of ∆s is in the form of (∆s,aniso −∆s,iso)/∆s,iso × 100%.

term ∆BB in Eq. (2.6), the two pressures and the density are not flux functions. This

subsection will focus on their variation over a certain flux surface.

If aspect ratio is large, which means the variation of magnetic field on a flux surface,

(Bmax − Bmin)/B is small, we can Taylor expand p‖ about B0 = B(R0), with R0 the

major radius of the magnetic axis. We use Eq. (2.12) to substitute the partial derivative

and derive the difference ∆p‖ ≡ p‖,out − p‖,in, where the subscript “out” denotes the

most outward point and “in” the most inward point on a flux surface. Generally B ≈
B0R0/(R0 + r cos θ) on a flux surface, in which r is minor radius of a certain flux surface

and θ the poloidal angle. Combined, we obtain

∆p‖

p‖
≈ 2r

R0

(
p⊥ − p‖
p‖

)
R=R0

. (2.27)

We note here to reach Eq. (2.27), we don’t need any kinetic assumptions. Similarly, an

expansion of ρ and p⊥ about B0, using Eq. (2.16), (2.17) and (2.18), yields the difference

of ρ and p⊥ on a flux surface :

∆ρ

ρ
≈ 2r

R0

(
p⊥ − p‖
p‖

)
R=R0

,
∆p⊥
p⊥
≈ 4r

R0

(
p⊥ − p‖
p‖

)
R=R0

, (2.28)

where the meaning of ∆ρ and ∆p⊥ is similar to ∆p‖. Equation (2.27) and (2.28) indi-

cate the linear dependence of ρ and p‖,⊥’s non-flux-function effect on the magnitude of

anisotropy and ε. These equations also give the direction of contour shift. If p⊥ > p‖
(p⊥ < p‖), the shift of pressures and density contour respect to flux surfaces is outward

(inward), which can be compared to previous findings [82, 83].

We also study the non-flux function effect numerically. In Fig. 2.5, we plot p‖ and

p⊥ on different flux surfaces for equilibrium A. Moving outward from the core, anisotropy

decreases and reaches p⊥ = p‖ at the boundary, while r/R0 increases from zero to its

maximum at the boundary. The competition between these two factors makes the differ-

ence peak at s = 0.5, with ∆p‖/p‖ ≈ 10% and ∆p⊥/p⊥ ≈ 20%. This figure demonstrates

the deviation of profiles from a function of flux in a single equilibrium. Figure 2.6 shows

the maximum in ∆ρ/ρ as a function of ε and ξ, scanning about the isotropic equilibrium

C. Inspection clarifies the change of density on a flux surface is almost linear with aspect
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ratio and anisotropy. Similar behavior is found for ∆p‖/p‖ and ∆p⊥/p⊥. Thus, the results

of Eq. (2.27) and (2.28) can be extrapolated to tight aspect ratio tokamaks.
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Figure 2.5: Pressure on flux surfaces for equilibrium A. s =
√

Ψ/Ψ0 is the standard flux label.

The upper boundaries of the shaded areas are the maximum value of pressure on certain flux

surfaces and the lower boundaries show the minimum. The shaded areas indicate the range of

value on flux surfaces. Pressures are normalized to p‖ on axis.
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To demonstrate the magnitude of the non-flux-function effect, we compare the pressure

profiles from anisotropic equilibrium A to flowing isotropic equilibrium D. Figure 2.7 shows

the pressure profile on flux surfaces for equilibrium D. The pressure difference peaks at 7%

at s = 0.4, which is comparable to the difference in p‖ for static anisotropic equilibrium

A. For equilibrium A, the pressure difference in p⊥ is larger than equilibrium D.

Impact on Shafranov Shift

Using methods in [30, 85, 86, 87], for large aspect ratio (ε = a/R0 � 1), low β (β ∼ ε2)

plasma, we have to zero’s order in ε, the modified GSE:

d

dr̂
(µ0〈p⊥〉+

1

2
B2
ϕ0) +

Bp0
r̂

d

dr̂
(r̂Bp0) = 0. (2.29)

Replacing p⊥ by p will return to the original isotropic and static case. This also confirms

our result that flux surface is mostly decided by p⊥ in large aspect ratio scenario.

The next order contribution, O(ε), along with bi-Maxwellian relationships Eq. (2.18),
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Figure 2.7: Pressure on flux surfaces for equilibrium D. The upper boundary of the shaded

area is the maximum value of pressure on certain flux surfaces and the lower boundary shows the

minimum. The shaded area indicates the range of value on flux surfaces. Pressure normalized to

1 at the magnetic axis.

yields the formulation of Shafranov-Shift:

∆′s(r̂) = − 1

r̂R0B2
p0

∫ r̂

0
r̂dr̂r

×
{

2r̂µ0

〈
p⊥

[
1 +

(
p‖ − p⊥

2p⊥

)
+

(
Ti

2T⊥
M2
tϕ

)]〉′
−B2

p0

}
.

(2.30)

This result is same as [86, 87]. The variables Bp0 and 〈p⊥〉 are related through Eq. (2.29),

and are independent to p‖. Anisotropy and flow contribute to the Shafranov-Shift only

through p‖ and M2
tϕ, and their effect is to scale p⊥. An example of how anisotropy influence

Shafranov-shift is provided in Fig. 2.4(a), where 〈p⊥〉 and 〈RBϕ〉 are fixed. The figure

shows that p‖ > p⊥ (p‖ < p⊥) indicates more (less) Shafranov-shift and the magnitude of

this change is linear in ξ.

2.5 Performance of isotropic model in reconstruction of

anisotropic systems

In this section we examine the implications of the choice of model in equilibrium recon-

struction. A useful starting point are global invariants obtained by integrating momentum

conservation. Following this procedure, Cooper and Lao [55, 96] reached the following re-

lationship between global parameters for large aspect ratio tokamaks (Eq.(12) of [97]):

1

2
(βp⊥ + βp‖) +Wpt +

li
2

=
S1

4
+
S2

4
(1 +

Rt
R0

), (2.31)

with R0 the major radius, Rt a volume dependent constant and

βp‖ ≡
2µ0p‖

B2
pa

, βp⊥ ≡
2µ0p⊥
B2
pa

, Wpt ≡
µ0ρu2

B2
pa

, li ≡
B2
p

B2
pa

, (2.32)

in which Bpa is average poloidal field at boundary and u is the rotation velocity. The terms

βp‖ is the parallel poloidal beta, βp⊥ the perpendicular poloidal beta, Wpt the rotation

poloidal beta and li the internal inductance. In this section, we consider static equilibria

in which Wpt = 0. The constants S1, S2 are integrals of external fields and currents
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and therefore can be measured [98]. For a given set of data from magnetic probes, S1

and S2 are exactly determined. Equation (2.31) provides a good measurement of fit for

reconstructions using both anisotropic models and MHD model with p = p∗ = (p‖+p⊥)/2

approximation and β = (βp⊥+βp‖)/2 (ideal MHD). This is the historical reason to use p∗ as

the approximate scalar pressure. The section intends to answer the question that if plasma

is anisotropic and we still reconstruct using ideal MHD, how good are the reconstructed

profiles, compared to using an anisotropic model.

2.5.1 Model dependence in equilibrium reconstuction

The impact of different models on the inferred pressure and current gradient profiles

can be examined by comparison of the toroidal current profile at large aspect ratio. For

the ideal MHD model, the GSE gives

µ0RJϕMHD = µ0R
2p′MHD(Ψ) + FMHDF

′
MHD(Ψ). (2.33)

where we have added the subscript MHD to tag these functions with an ideal MHD model.

A similar functional form can be written for the toroidal current using an anisotropy

modified MHD model. At large aspect ratio, the approximations R ≈ R0 + r cos θ and

B ≈ B0R0/R can be applied. We also take Ψ derivative on both sides of Eq. (2.12), and

use it to substitute the cross derivative in the Taylor expansion of ∂p‖/∂Ψ about B0. If

flow is ignorable, the RHS of the modified GSE Eq. (2.14) can thus be rearranged into

µ0RJϕm ≈ µ0R
2p∗′0,m +

(
FmF

′
m + µ0R

2
0

p′‖0m − p
′
⊥0m

2

)
+O

(
r2

R2

)
, (2.34)

where we have similarly added the subscript m to tag the functions with the anisotropy

modified MHD model. The functions p‖0m, p⊥0m and p∗0m are those quantities on the flux

surface at point R = R0. Higher order term are written as O(r2/R2).

Providing internal current profile information (such as MSE) is available, JϕMHD =

Jϕm in any reconstruction: the current profile is unique. To O(r/R), the RHS of Eq.

(2.33) and Eq. (2.34) have the same variables and functional dependence with R2, that is,

a R2 flux surface varying part and a flux surface invariable part. By equating these two

parts respectively, reconstructions using different models but the same data will yield

p′MHD = p∗′0,m, (2.35)

FMHDF
′
MHD = FmF

′
m + µ0R

2
0

p′‖0m − p
′
⊥0m

2
. (2.36)

Consequently the inferred pressure profile will be identical to the usual p∗ approximation,

but toroidal flux function, and thus the poloidal current profile will be different in the GSE

and the modified GSE models. This is consistent with Fig. 2.4(b) which shows the plasma

cannot preserve its global parameters, if we fix both 〈p∗〉 and 〈RBϕ〉 but vary anisotropy.

At tight aspect ratio, we should consider O(r2/R2) contribution to the modified GSE,

with the second term in Taylor expansion of Eq. (2.16), (2.17) and (2.18). The result is

f

(
O

(
r2

R2

))
= −µ0(p‖0 − p⊥0)

(
1 +

p⊥0

p‖0

)
r2

R2
0

cos2 θ +O

(
r3

R3

)
. (2.37)
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Due to the cos2 θ dependent, it is not possible to resolve Jϕ into two MHD flux functions, as

done to the zeroth and first parts of Eq. (2.34). Equation (2.37) reveals the dependency

of the higher order term on the product of (p‖0 − p⊥0)/p‖0 and r2/R2. Thus, in tight

aspect ratio tokamaks with large anisotropy, the reconstructed Jϕ and q profile formed

by the two flux functions may be distorted, in comparison to the results from anisotropic

reconstruction.

2.5.2 Equilibrium reconstruction of a MAST discharge

We here study a pair of reconstructions from a single discharge. The example is

from EFIT-TENSOR reconstruction for MAST(ε ≈ 0.7) discharge #18696 at 290ms,

using either an anisotropic model or isotropic model. In this discharge, MSE data is

not available. The constraints we used are magnetic probes, total currents and pressures

from TRANSP. These constraints are identical in both reconstructions, except for the

anisotropic reconstruction, p‖ and p⊥ are constrained to TRANSP p‖ and p⊥ respectively,

and for the isotropic reconstruction, isotropic pressure is constrained to p∗ = (p‖+ p⊥)/2.
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Figure 2.8: (a) Pressures on the mid-plane in anisotropic reconstruction (two pressures with solid

and dash dot line) and in isotropic reconstruction (p∗ with dot line) for MAST discharge 18696

at 290ms. (b) The reconstructed Jϕ profile and q profile on the mid-plane. (c) The reconstructed

RBϕ profile on the mid-plane. (d) The reconstructed poloidal current profile on the mid-plane

In this discharge, NBI is parallel and we have p‖/p⊥ ≈ 1.25 on the magnetic axis, as

shown in Fig. 2.8(a). We can see from Fig. 2.8(b) that the two reconstructions gives almost

the same Jϕ profiles, with a small difference in the core region. We also notice that these

two reconstructions give slightly different boundaries, causing the difference of q and Jϕ
profile on the low field side. Both inference differences arise because the EFIT-TENSOR
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reconstruction is not constrained by a Jϕ profile. Despite these differences, the q profile

is found to be nearly identical as a function of flux in the two cases. In our previous work

[77], we recorded a 15% lift in q0 due to anisotropy, which is not observed here. The reason

is that in Hole et al , the two equilibria with/without anisotropy had fixed profiles, not

fixed external constraints of equilibrium, as studied here. In addition, modelled anisotropy

in Hole et al was p⊥/p‖ = 1.7 (only the beam pressure was considered).

As predicted by Eq. (2.36), the MHD reconstructed toroidal field is underestimated

in comparison to the anisotropic reconstruction. This prediction is verified by Fig. 2.8(c),

showing that RBϕ is underestimated by 3% at the core. When looking at Jp profiles of the

two cases in Fig. 2.8(d), we discover a large discrepancy near the core region, which peaks

at R = 0.9m with isotropic Jp only 1/3 of its anisotropic reconstruction. The difference

can be explained by Eq. (2.36). Since the two models infer different RB′ϕ, Jp is different

through µ0Jp = |∇RBϕ|/R from Eq. (2.8). In this case the maximum contribution of the

O(r2/R2) term is 1.5% to the total current, so the higher order contribution is ignorable.

2.5.3 Implications of using MHD to reconstruct anisotropic plasma

Based on the above findings, if single pressure MHD is used to reconstruct a purely

anisotropic plasma, the following four problems will occur according to aspect ratio and

magnitude of anisotropy.

(i) The poloidal current is different.

This problem is demonstrated in Section 2.5.1 and 2.5.2 and occurs when the varia-

tion of F profile is comparable to the variation of p‖ − p⊥ across flux surfaces.

(ii) The anisotropic profiles are not flux functions.

In MHD, p, RBϕ and ρ are flux functions. As shown in Section 2.4.2, they deviate

from flux functions. According to Eq.(2.27), (2.28) and Fig. 2.5, this problem linearly

increases with ε and ξ.

(iii) Force balance is only satisfied to O(r/R) with two flux functions.

At tight aspect ratio and large anisotropy, we should take into account terms

O(r2/R2) in the modified GSE. It is not possible to decompose the Jϕ profile into

the combination of two flux functions as we demonstrated in Section 2.5.2. If MHD

reconstruction is used, the reconstructed Jϕ profile formed by two flux functions may

be distorted. Inspection of Eq. (2.37) reveals that this problem is a linear function

of ε2ξ.

(iv) The nonlinear current Jnl is important at high β and large anisotropy.

In Section 2.4.1, we showed that Jnl is proportional to ∆. The ideal MHD reconstruc-

tion neglects Jnl, which might impact the accuracy of the reconstructed Jϕ profile

and the q profile in a plasma with high β and large anisotropy.

To illustrate the problems in ε−ξ space, we have sketched regimes where each problem

might occur. The corresponding contours are shown in Fig. 2.9, which consist of four

regions with a different number of problems. The lower boundaries are: for problem (i)

|ξ| = 0.05 which represents 5% difference between p‖ and p⊥ on average; for problem (ii)

|∆ρ|/ρ = 5% calculated from Fig. 2.6, taking the average of ξ > 0 and ξ < 0; for problem

(iii) maximum contribution of the O(r2/R2) term to Jϕ equals to 5% , which is obtained
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by scanning around equilibrium C. Projection of problem (iv) is not meaningful in ε − ξ
space, as it is a function of ∆ thus β and ξ, not ε.

We have identified the #18696 MAST equilibrium and our equilibrium A and B in

these contours. Also, p⊥/p‖ ≈ 2.5 was found in a JET discharge (ε ≈ 0.3) during ICRH

heating [76]. The parameter |ξ|, if assumed to reach one third of its maximum local

value, is 0.3. Problem (ii) is significant in this case, with maximum ∆p‖/p‖ ≈ 17%.

Recent unpublished MAST data suggests the existence of discharges with |ξ| > 0.3, and

thus encounter Problems (i)-(iii). We will include the study of this discharge in our later

publications. Finally, Problem (iv) appears in discharges with relative high β. To date, we

haven’t identified a discharge with ∆ > 5% in MAST. However, a > 40% volume average

β is observed in NSTX discharges with strong parallel injection [99]. Also, the beam power

will increase to 7.5MW in MAST Upgrade [100], providing possibility to trigger Problem

(iv) and to enrich our study in the future.
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Figure 2.9: Problems with ideal MHD reconstructions in ε − ξ space. The indexes ’i’, ’ii’ and

’iii’ each indicates problem i - iii occur(s) if parameters of an equilibrium is in this region. The ’x’

markers represent the positions of the MAST #18696 shot, equilibrium A and B in ε − ξ space,

respectively.

2.6 Conclusion

The impact of pressure anisotropy to plasma equilibrium is studied analytically and

numerically. To achieve the latter, we have extended the fixed boundary equilibrium and

mapping code HELENA to include toroidal flow and anisotropy (HELENA+ATF). We

decompose the toroidal current into contributions from both pressures, the toroidal field

and the nonlinear part and find the dependence of Jp‖ on the ratio B2
p/B

2. We find a

dominant role of Jp⊥ over Jp‖ in the anisotropy and toroidal flow modified Grad-Shafranov

equation in large aspect ratio tokamaks. However in a MAST like equilibrium, the Jp‖
contribution can reach 20% of the total current with ε = 0.7 and p‖/p⊥ ≈ 1.5 which should

not be ignored. The impact of this is a 10% change in the current profile, and thus the

q profile, with corresponding implication for plasma stability. The nonlinear current Jnl
is proportional to ∆, and should not be neglected when anisotropy appears in a high β

plasma. We have also found that the deviation of profiles from flux functions is in the

order of ε|p‖ − p⊥|/p‖, showing a larger contour shift with tighter aspect ratio and larger

anisotropy.

Motivated by these analysis, we find that depending upon the aspect ratio and the

magnitude of anisotropy, the following problems may be encountered when the ideal MHD

model with p∗ = (p‖ + p⊥)/2 is used to reconstruct an anisotropic plasma. First, the



38 Impact of anisotropy pressure on tokamak equilibria

poloidal current is different. This occurs when the variation of F profile is comparable

to the variation of p‖ − p⊥ across flux surfaces. Second, the anisotropy profiles are not

flux functions, their difference on a flux surface linearly increases with the magnitude of

anisotropy and ε. Third, the O(r2/R2) contribution to Jϕ is not considered. This may

distort the Jϕ and q profiles in tight aspect ratio tokamaks with large anisotropy. Finally,

the nonlinear current is neglected, degrading the accuracy of the result in a plasma with

high β and large anisotropy.

In future work, we plan to study the impact of anisotropy on the magnetic configu-

rations, from a range of experimental discharges and machines, to address this problem

empirically. We also plan to study the anisotropic effect on plasma stability.

2.7 Appendix: Solvability of p‖, p⊥, B and ∆

Here, we demonstrate that Eq. (2.20) and (2.21) are a set of sufficient conditions for

the four interdependent variables p‖, p⊥, B and ∆ (Eq. (2.6) (2.7) and (2.11)) to have one

and only one root.

The nth Picard iteration gives Ψn(R,Z) and thus Bp,n = |∇Ψn|. To calculate the

magnetic field B after the nth iteration at a certain grid point: Bn(R,Z), the following

equations need to be solved for unknown Bn, with known Ψn, Bp,n and R:

B2
n =

F 2(Ψn)

(1−∆n)2R2
+B2

p,n, (2.38)

∆n =
µ0[p‖(Ψn, Bn, R)− p⊥(Ψn, Bn, R)]

B2
n

. (2.39)

Rearranging Eq. (2.39) and taking the derivative lead to

g(Bn) = (B2
n −B2

p,n)(1−∆n)2 − F 2(Ψn)

R2
= 0,

g′(Bn) = 2Bn(1−∆n)

×

[
(1−

B2
p,n

B2
n

)

(
1 +

µ0

Bn

∂p⊥(Ψn, Bn, R)

∂Bn

)
+
B2
p,n

B2
n

(1−∆n)

]
.

(2.40)

With Eq. (2.20), (2.21) and B > Bp, we have g′(Bn) > 0. Therefore g(Bn) is monoton-

ically increasing from Bp,n to +∞. Providing that g(Bp,n) < 0 and g(+∞) → +∞, Eq.

(2.40) should have one and only one root in region [Bp,n,+∞).



Chapter 3

Impact of anisotropic pressure on

tokamak plasmas normal modes

and continuum

Abstract

Extending the ideal MHD stability code MISHKA, a new code, MISHKA-

A, is developed to study the impact of pressure anisotropy on plasma stability.

Based on full anisotropic equilibrium and geometry, the code can provide nor-

mal mode analysis with three fluid closure models: the single adiabatic model

(SA), the double adiabatic model (CGL) and the incompressible model. A

study on the plasma continuous spectrum shows that in low beta, large as-

pect ratio plasma, the main impact of anisotropy lies in the modification of

the BAE gap and the sound frequency, if the q profile is conserved. The SA

model preserves the BAE gap structure as ideal MHD, while in CGL the lowest

frequency branch does not touch zero frequency at the resonant flux surface

where m + nq = 0, inducing a gap at very low frequency. Also, the BAE

gap frequency with bi-Maxwellian distribution in both model becomes higher

if p⊥ > p‖ with a q profile dependency. As a benchmark of the code, we study

the m/n = 1/1 internal kink mode. Numerical calculation of the marginal

stability boundary with bi-Maxwellian distribution shows a good agreement

with the generalized incompressible Bussac criterion [A. B. Mikhailovskii, Sov.

J. Plasma Phys 9, 190 (1983)]: the mode is stabilized(destabilized) if p‖ < p⊥
(p‖ > p⊥).

3.1 Introduction

The magnetohydrodynamics (MHD) theory is widely applied in fusion plasma, provid-

ing a great aid in explaining various plasma instabilities and the plasma oscillating spectra

below the ion cyclotron frequency. In modern toroidal magnetic confinement devices, the

plasma contains significant fast populations originated from neutral beam injection (NBI)

and ion cyclotron resonance heating (ICRH), inducing strong pressure anisotropy [36].

The magnitude of anisotropy can reach p‖ ≈ 1.7p⊥ in a MAST beam heated discharge

[77, 101], or p⊥ ≈ 2.5p‖ in a JET ICRH discharge [76], with p‖ and p⊥ the pressure par-

allel and perpendicular to the magnetic field lines, respectively. However, the physics of

pressure anisotropy is not covered by the isotropic MHD theory.

39
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In the regime where wave-particle interaction is not important, a fluid approach is

often used with a reasonable fluid closure (like the adiabatic condition for ideal MHD)

for phenomena only related to the macroscopic quantities such as density, current and

pressure. Many attempts have been made to incorporate anisotropy into the fluid theory.

Chew, Goldberger and Low (CGL) [15] first introduced the widely-applied form of pressure

tensor and derived the double-adiabatic (CGL) closure, with its energy principle later

derived by Bernstein et al [102]. Unlike MHD, CGL assumes parallel and perpendicular

pressures doing work independently in a collisionless plasma, therefore cannot reduce to

MHD in the isotropic limit. It was found that CGL overestimates δW , the perturbed

potential energy, compared to the kinetic theory, while MHD underestimates it [25, 26].

Also, the mirror stability limit given by CGL does not match the result of kinetics theory

[18, 19]. The major problem with CGL comes from the ignored heat flow when the mode

frequency is comparable or smaller than the particle streaming frequency, especially in the

vicinity of marginal stability boundary [14, 103]. Still, the CGL closure is implemented

in many stability treatments, such as the ballooning modes [104, 105]. To overcome these

drawbacks of CGL, some authors have proposed alternative fluid closures, for instance

the double polytropic laws [21], a higher-order-momentum closure [23, 24], and recently,

the single adiabatic (SA) model [20] which has the unique property of producing the

same results as the MHD model for isotropic equilibria. Another pathway to overcome

the drawbacks of CGL is to use hybrid approaches, in which thermal components are

described by MHD and the fast ions by kinetics. The impact of pressure anisotropy is

often investigated using kinetics energy princples [25, 26, 106]. In tokamaks, efforts have

been made to study sawtooth modes (see Graves et al [107] and Chapman et al [108] and

references therein) and interchange modes [109]. There are also significant developments

in stellarators. The ANIMEC code [110] solves the 3D anisotropic equilibrium with the

fast ion described by a guiding center distribution function, and is further applied to

model anisotropy on LHD[111]. An energy principle which assumes non-interacting hot

particles [112] is implemented in the ideal MHD code TERPSICHORE [113] to model

anisotropic-pressure interchange modes in a beam heated LHD discharge [114]. Despite

its shortcoming, the fluid approach can aid in the understanding of various effects due to

its simple and intuitive nature. To date, there are few numerical studies on the oscillating

spectrum of a toroidal anisotropic plasma.

In the regime where significant wave-particle resonance exists, a pertubtive approach,

in which the equilibrium and the linear mode eigenfunctions are modeled by fluid the-

ory and the wave-particle interaction by kinetic theory, is widely implemented. In toka-

maks, one of the most utilized tool chains is the HELENA-MISHKA-HAGIS combina-

tion [59, 61, 93], with the equilibrium, geometry and mode eigenfunctions calculated by

ideal MHD, while the fast ion response and non-linear mode evolution are described by

drift-kinetics equations. It has been successful in resolving the fast-particle-excited global

Alfvén eigenmodes (see reviews [115, 116] and references therein). Recently, several equi-

librium codes [92, 88, 101] have been developed to study the equilibrium of anisotropic

and toroidally rotating plasmas. For linear stability problem, efforts have been made to

include the physics of diamagnetic drift and toroidal flow into MISHKA [117, 118] for an

isotropic equilibrium, while the impact of pressure anisotropy based on a full anisotropic

equilibrium and geometry remains untouched. Our previous study using current remap-

ping techniques shows that anisotropy can modify the q profile in MAST, inducing double

TAE modes with different localization [77, 89], and thus a double wave-particle resonance.

This also serves as a motivation to develop a MISHKA-like code to study the impact of
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anisotropy on linear stability, meanwhile drive a kinetic code using a fully anisotropic

framework.

This work is organized as follows. In Section 3.2, we state our basic assumptions and

list the plasma equations used in the paper. Section 3.3 briefly describes the anisotropic

equilibria and introduce the straight field line coordinates, serving as a base point for the

stability treatment. Then in Section 3.4, we derive the linearized momentum equation,

ideal Ohmic’s law and the fluid closure equations which are ready to use in a MISHKA-like

numerical code. Section 3.5 introduces the implementation of the derived equations into

a global normal mode code, MISHKA-A, and a continuous spectrum code, CSMISH-A.

Using these tools, we study the impact of anisotropy on the plasma continuous spectrum

and the internal kink mode, shown in Section 3.6 and Section 3.7, respectively. We also

compare the numerical results with existing analytical theory, serving as a code benchmark.

Finally, Section 3.8 summarizes the paper and draws the conclusion.

3.2 Plasma Model

We start from a plasma described by the first two moments of the Vlasov Equation

(the continuity and the momentum equation), the Maxwell Equations and the ideal Ohmic

law. The basic equations are
dρ

dt
+ ρ(∇ · V ) = 0, (3.1)

ρ
∂V

∂t
= −∇ · P + j ×B, (3.2)

∂B

∂t
= ∇× (V ×B), (3.3)

j = ∇×B, (3.4)

∇ ·B = 0, (3.5)

where ρ is the mass density, V the mass velocity, P the second rank pressure tensor, j

the current density and B the magnetic field. For simplicity, we use a natural MHD unit

system where µ0, the vacuum permeability, is set to 1. All electromagnetic fields, fluxes

and vector potentials can be restored to S.I. units with a transformation · · · → . . . /
√
µ0

(e.g. B → B/
√
µ0) and all currents with j → √µ0j. Equation (3.1) is the continuity

equation. Equation (3.2) is the momentum equation. Equation (3.3), (3.4) and (3.5) are

the Maxwell Equations with ideal Ohmic law ignoring the displacement currents. The

pressure tensor P takes the CGL form, i.e.

P = p⊥I + ∆BB, ∆ =
p‖ − p⊥
B2

, (3.6)

with I the identity tensor, p⊥ and p‖ the pressure perpendicular and parallel to the mag-

netic field, respectively. In our treatment, the finite Larmor radius (FLR) and the finite

orbit width (FOW) effects are ignored. These effects can be important for fast particles,

but resolving them requires FLR correction of non-diagonal pressure tensor terms (such

as Chhajlani et al [119] for CGL) or kinetics/gyro-kinetics approaches, which are not

considered in this paper.

In this paper, we implement the standard linearization method, which expands all

quantities into a combination of a time-averaging equilibrium part and a small time-
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dependent part, which varies with eλt. The mode frequency ω and growth rate γ are

related to λ through the relationship λ = γ − iω. By substituting these representatives

into the plasma equations and considering the zeroth and the first order separately, the

equations are then converted into a time-independent equilibrium problem and a linearized

stability problem. We drop the subscripts “0” for equilibrium quantities for convenience.

To close the set of equations, one needs to introduce a “fluid closure” which relates

p‖ and p⊥ to other known variables. In this work, we examine three fluid closures: the

single adiabatic model [20], the double adiabatic model [15], and the incompressible limit

given by Mikhailovskii [120]. The single adiabatic model serves as a generalization of

MHD. While keeping the adiabaticity assumption of MHD, it assumes that the parallel

and perpendicular pressure are doing joint work, and therefore resolves the isotropic part

of the pressure perturbation. This fluid closure equation is given by

∂p̃‖

∂t
=
∂p̃⊥
∂t

= −Ṽ · ∇
(

1

3
p‖ +

2

3
p⊥

)
−
(

1

3
p‖ +

4

3
p⊥

)
∇ · Ṽ −

(
2

3
p‖ −

2

3
p⊥

)
b · (b · ∇Ṽ ),

(3.7)

in which the unit vector b = B/B is the direction of the magnetic field line. In contrast,

the double adiabatic model assumes that parallel and perpendicular pressure do adiabatic

work independently. The fluid closure equations, d/dt(p⊥/ρB) = d/dt(p‖B
2/ρ3) = 0, after

substituting Eq. (3.1) for dρ/dt and B direction of Eq. (3.3) for dB/dt, are rewritten as

∂p̃‖

∂t
= −Ṽ · ∇p‖ − p‖(∇ · Ṽ )− 2p‖b · (b · ∇Ṽ ), (3.8)

∂p̃⊥
∂t

= −Ṽ · ∇p⊥ − 2p⊥(∇ · Ṽ ) + p⊥b · (b · ∇Ṽ ). (3.9)

Finally, the incompressible closure is obtained when the Lagrangian perturbed distribution

function is set to zero, i.e. df̃/dt = ∂f̃/∂t+ Ṽ⊥ · ∇f0 = 0, where f̃ is the Euler perturbed

distribution function and f0 is the equilibrium distribution function. After integrating

over the velocity space, the incompressible fluid closure is given by

∂p̃‖

∂t
= −Ṽ 1

(
∂p‖

∂s

)
B

, (3.10)

∂p̃⊥
∂t

= −Ṽ 1

(
∂p⊥
∂s

)
B

, (3.11)

where Ṽ 1 is the contravariant component of the straight field line coordinates (s, ϑ, ϕ),

which will be introduced in the next section.

3.3 Equilibrium and geometry

For the zeroth order equilibrium problem, the time derivatives ∂/∂t = 0. In this work,

we ignore all equilibrium flows, i.e. V0 = 0. Using Eq. (3.5) in an axisymmetric tokamak

geometry, the equilibrium magnetic field in cylindrical coordinate (R,Z, ϕ) is written as

B = ∇Ψ×∇ϕ+ F∇ϕ, (3.12)
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where Ψ is the poloidal magnetic flux, F ≡ RBϕ, and Bϕ is the toroidal magnetic field.

We note that unlike plasma with isotropic pressure, we do not require F to be a flux

function.

Substituting Eq. (3.4), (3.6) and (3.12) into Eq. (3.2), the component in ∇ϕ direction

gives rise to a flux function FM (Ψ) ≡ RBϕ(1 − ∆), while the ∇Ψ direction gives the

anisotropy modified Grad-Shafranov Equation (GSE). The modified GSE have two equiv-

alent forms, the pressure form and the enthalpy form (See [101] and references therein).

In the pressure form of the GSE, the input profiles are specified by FM (Ψ) and a 2D

profile p‖(Ψ, B). This 2D pressure profile is usually obtained by taking the moments of

guiding center distribution functions [83] either analytically [82] or numerically [81] (see

Takeda et al [121] for a brief review). The enthalpy form of the GSE, when solved as-

suming the distribution functions are bi-Maxwellian and the parallel temperature is a flux

function T‖ = T‖(Ψ), requires four flux functions {H,T‖, FM ,Θ} as input, corresponding

to the density, parallel temperature, toroidal field and anisotropy, respectively. The pro-

file H(Ψ) gives the radial shape of the density profile, and in isotropic plasma we have

ρ = exp(H/T‖). The profile Θ(Ψ) defines the anisotropy magnitude p⊥/p‖, which is given

by
p⊥
p‖

=
B

|B −ΘT‖|
. (3.13)

The density and pressures are then linked to these profiles through

ρ =
p⊥
p‖

exp
H

T‖
, (3.14)

and

p‖ = ρT‖, p⊥ = ρT⊥ = ρT‖
B

|B −ΘT‖|
. (3.15)

These equation are identical to taking the moments of a bi-Maxwellian distribution func-

tion of the form in McClements et al [122], written as

F (µ,E,Ψ) = nr(Ψ)
A(Ψ)√

2πT⊥(Ψ)
3 exp

[
−|E − µB0|

T‖(Ψ)
− µB0

T⊥(Ψ)

]
, (3.16)

where A(Ψ) is a normalization factor and Θ is just a convenient representation of the

combination

Θ =

(
1

T‖(Ψ)
− 1

T⊥(Ψ)

)
B0. (3.17)

In this paper, we will use this bi-Maxwellian model to explore the impact of anisotropy on

stability, since it is the simplest model that captures pressure anisotropy for both ICRH

and NBI. The model has limitations, such that it takes all species as a single bi-Maxwellian

therefore cannot reproduce the long tail of ICRH fast ions, and that it omits any physics

due to fine structure of pitch angle dependency of the distribution function (i.e. non-bi-

Maxwellian structure). However, it does give the correct 〈p‖〉 and 〈p⊥〉, as well as ∆p‖/p‖,

∆ρ/ρ (the change of these profiles on a flux surface), and anisotropy ∆, which are not

determined by a choice of the shape of the distribution function [83]. Here, 〈...〉 means

flux surface average. We also mention that our stability treatment later on does not rely

on the choice of equilibrium distribution function, as long as the modified GSE is solved

self-consistently, and can provide Ψ as a function of (R,Z), i.e. the flux surfaces, for the
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stability treatment.

The solution Ψ(R,Z) for the modified GSE is then mapped into the straight field line

coordinates (s, ϑ, ϕ), with s =
√

Ψ and ϑ defined by

ϑ ≡
∫

Ψ

Bϕdl

qRBp
, q(Ψ) ≡ 1

2π

∮
Ψ

Bϕdl

RBp
, (3.18)

in which Bp is the poloidal field and q the safety factor. The integrals are performed on a

constant Ψ surface clockwise facing the direction of eϕ and starting from Z = Z0, in which

Z0 is the Z coordinate for the magnetic axis. The metric coefficients of this curvilinear

coordinate, gij and gij , as well as the Jacobian J , are defined by

gij ≡ ∇xi · ∇xj , gij ≡ ∂r

∂xi
· ∂r
∂xj

, (3.19)

J ≡
√
det(gij) =

fqR

F
, (3.20)

where f = dΨ/ds and det is the determinant operator, with(x1, x2, x3) = (s, ϑ, ϕ). In the

straight field line coordinates, the contravariant equilibrium current is given by

j1 =
1

J

∂F

∂ϑ
, j2 = − 1

J

∂F

∂s
,

j3 =
1

J

(
∂

∂s

g22F

qR2
− ∂

∂ϑ

g12F

qR2

)
, (3.21)

and the contravariant magnetic field components are given by

B1 = 0, B2 =
F

qR2
, B3 =

F

R2
. (3.22)

For the GSE with anisotropy in the straight field line coordinates, one can refer to Fitzger-

ald et al [20], as we will not restate it here.

3.4 The perturbed equations in the straight field line coor-

dinates

In this section, we write our first order perturbed equations in the straight field line

coordinates using contravariant and/or covariant representatives. Same as the original

MISHKA, a set of “optimized” projections of Ṽ and B̃ is used instead of the contra/co-

variant projections. We use circumflexes to label these projections in order to distinguish

them from the contra/co-variant projections, which are labeled by tildas. The perturbed

fluid velocity Ṽ is expressed in its contravariant normal component Ṽ 1, its binormal

projection V̂ 2 and its parallel projection V̂ 3, with

V̂ 2 = [Ṽ ×B]1, V̂ 3 =
Ṽ ·B
B2

. (3.23)

The perturbed magnetic field B̃ is calculated by taking the curl of the perturbed magnetic

vector potential Ã (i.e. B̃ = ∇×Ã). Then similarly, Ã is expressed in its covariant normal
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component Ã1, its binormal projection Â2 and its parallel projection Â3, with

Â2 =
[Ã×B]1

B2
, Â3 =

Ã ·B
B2

. (3.24)

The conversion between these projections and contra/covariant components of both Ṽ

and Ã can be found in Fitzgerald et al [20] and Mikhailovskii et al [59], while B̃1, B̃2 and

B̃3 are related to Ã1, Â2 and Â3 through Eq. (90) to (92) in Fitzgerald et al [20]. The

covariant components are related to contravariant components through B̃i =
∑

j gijB̃
j .

Finally, the perturbed magnetic field strength is given by B̃ = B̃ · b.

3.4.1 The ideal Ohm’s law

Equation (3.3), the ideal Ohm’s law, stays unchanged moving from isotropic plasma

to anisotropic plasma. The equations are therefore identical to Mikhailovskii et al :

λÃ1 = V̂ 2, (3.25)

λÂ2 = −Ṽ1, (3.26)

λÂ3 = 0. (3.27)

We recall that λ = γ − iω. When plasma equilibrium flow and resistivity are ignored, Â3

is an ignorable component, henceforth neglected.

3.4.2 The momentum equation

Perturbing Eq. (3.2), one obtains

ρ0
∂Ṽ

∂t
= −∇ · P̃ +H, (3.28)

in which

P̃ = p̃⊥(I− bb) + p̃‖bb+ (p‖ − p⊥)

(
B̃⊥
B
b+ b

B̃⊥
B

)
, (3.29)

and

H = (∇×B)× B̃ −B × (∇× B̃). (3.30)

The first two covariant components of H, H1 and H2, are provided in Fitzgerald et al [20]

and restated in 3.9 while H3 is given in 3.9 as well.

After some algebra, we reach the perturbed momentum equation covariantly in the
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straight field line coordinates:

λρṼ1 = (1−∆)H1 − ∂sp̃⊥ − ∂j(p̃‖ − p̃⊥ − 2∆BB̃)
B1B

j

|B|2

−∆∂s(BB̃)− (BjB̃1 + B̃jB1)∂j∆

−(p̃‖ − p̃⊥ − 2∆BB̃)

(
B1

B
∇ · b+ κ1

)
, (3.31)

λρṼ2 = (1−∆)H2 − ∂ϑp̃⊥ − ∂j(p̃‖ − p̃⊥ − 2∆BB̃)
B2B

j

|B|2

−∆∂ϑ(BB̃)− (BjB̃2 + B̃jB2)∂j∆

−(p̃‖ − p̃⊥ − 2∆BB̃)

(
B2

B
∇ · b+ κ2

)
, (3.32)

summing over index j = 1, 2, 3, in which κ = b · ∇b is the magnetic field line curvature

with its covariant components κ1 and κ2 given in 3.9. Taking the dot product of Eq.

(3.28) with B, the third component of the momentum equation is written as

λρ|B|2V̂ 3 = (1−∆)BjHi −Bj∂j(p̃‖ − 2∆BB̃)−∆Bj∂j(BB̃)

−∂j∆(B̃j |B|2 +BjBB̃)− (p̃‖ − p̃⊥ − 2∆BB̃)(B∇ · b), (3.33)

summing over index j = 1, 2, 3.

3.4.3 The fluid closure equation

For the single-adiabatic and double-adiabatic model, the fluid closure equations have

similar forms in the straight field line coordinates, which are given by

λp̃‖ = −
γ‖1

J
[∂s(JṼ

1) + ∂ϑ(JṼ 2) + ∂ϕ(JṼ 3)]− γ‖2E

−(Ṽ 1∂s + Ṽ 2∂ϑ)f‖, (3.34)

λp̃⊥ = −γ⊥1

J
[∂s(JṼ

1) + ∂ϑ(JṼ 2) + ∂ϕ(JṼ 3)]− γ⊥2E

−(Ṽ 1∂s + Ṽ 2∂ϑ)f⊥, (3.35)

where

E =
Bj

B
∂j(BV̂

3)− Ṽ 1κ1 −
V̂ 2

fq
κ2. (3.36)

For single-adiabatic model, we have

γ‖1 = γ⊥1 =
1

3
p‖ +

4

3
p⊥, γ‖2 = γ⊥2 =

2

3
p‖ −

2

3
p⊥,

f‖ = f⊥ =
1

3
p‖ +

2

3
p⊥. (3.37)

For double-adiabatic model, we have

γ‖1 = p‖, γ‖2 = 2p‖, f‖ = p‖,

γ⊥1 = 2p⊥, γ⊥2 = −p⊥, f⊥ = p⊥. (3.38)
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There is no need to restate the incompressible fluid closure here, since Eq. (3.10) and

(3.11) are already given in the straight field line coordinates.

3.5 Numerical method

Similar to the original MISHKA and its extension MISHKA-D/F, we use the fol-

lowing variables in our anisotropic extension of the MISHKA code, namely MISHKA-A

(anisotropy):

X1 = fqṼ 1, X2 = iV̂ 2, X3 = iÃ1, X4 = fqÂ2,

X5 = if V̂ 3, X6 = fp̃⊥, X7 = fp̃‖. (3.39)

These variables are then expanded poloidally and toroidally in Fourier harmonics with

mode number m and n respectively, and radially in cubic/quadratic Hermite elements, i.e.

Xα = eλt+inϕ
∞∑

m=−∞

N∑
ν=1

Xmν
α Hν(s)eimϑ, (3.40)

in which Hν(s) is the cubic/quadratic Hermite elements and N the number of radial

elements. The weak form is constructed by multiplying Eq. (3.31), (3.32) , (3.33), (3.25),

(3.26), (3.34) and (3.35) respectively by Ṽ 1∗/(1−∆), V̂ 2∗/fq(1−∆), fV̂ 3∗/(1−∆), A∗1/J ,

f2q2Â∗2/J , fp̃‖ and fp̃⊥, converting the system into a linear algebra problem solving

λNi = Mi, (3.41)

in which

Ni =
8∑
j=1

∫
B(i, j)X∗iXjJdsdϑ, (3.42)

and

Mi =

8∑
j=1

∫
[A(i, j)X∗iXj +A(i′, j)

∂X∗i
∂s

Xj

+A(i, j′)X∗i
∂Xj

∂s
+A(i′, j′)

∂X∗i
∂s

∂Xj

∂s
]Jdsdϑ.

We separate the matrix elements A(i, j) into

A(i, j) = A0(i, j) +AA(i, j), (3.43)

in which A0(i, j) are the common terms for MISHKA (isotropic) and MISHKA-A

(anisotropic) and AA(i, j) are terms existing only in anisotropic plasmas. These matrix

elements are given in Section 3.10.

To obtain the continuous spectrum, we reduced MISHIKA-A to a continuum code

(CSMISH-A). The method provided in Poedts et al [60] (CSCAS) is implemented here,

carrying the calculation in the vicinity of the singularity Ψ→ Ψ0.
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3.6 Anisotropy impact on plasma continuous spectrum

In this section, we study the continuous spectrum of an anisotropic plasma described

by the SA and the CGL model, as well as the modification of anisotropy to the continuous

spectrum. We present a set of examples with circular cross-section, large aspect ratio

(ε = 0.3) and low β. The equilibrium solutions are computed by HELENA+ATF [101]

using the enthalpy form of the modified GSE with the bi-Maxwellian distribution and the

equilibrium thermal closure T‖ = T‖(Ψ). We start from an isotropic MHD reference case

with

T (ΨN ) = C0(1−ΨN )2 + C1, RBϕ(ΨN ) = F0,

H(ΨN ) =
C0

2
(1−ΨN )3 + C2, (3.44)

where ΨN is the normalized flux surface defined as ΨN = 0 on axis and ΨN = 1 at the

edge, and C0, C1, C2 and F0 are adjustable constants. Constant F0 indicates vacuum field

strength. Constants C1 and C2 are small values to make density and current profiles

vanish at the plasma edge. The density and pressure profiles are given by Eq. (3.14)

and (3.15). The q profile monotonically increases from q0 = 1.7 to q95 = 7. We choose

β = 1% on the magnetic axis. In the next step, we add anisotropy to this reference

equilibrium. The Θ profile, which indicates the magnitude of anisotropy, is chosen to be

constant. Therefore, anisotropy decreases from core to edge following the same trend of

T , which is associated with on-axis beam heating or ICRH. For an individual anisotropic

equilibrium, we specify a Θ0, then iterate the T‖, FM and H profiles to keep 〈p∗〉, 〈j〉 and

〈ρ〉 on each flux surface identical to the isotopic reference case. Here p∗ = (p‖ + p⊥)/2

and 〈...〉 means flux surface average. In this way the q profile and the metrics of these

anisotropic equilibria are the same as the reference isotropic case to O(ε2(p‖ − p⊥)/p‖).

We have accordingly obtained equilibria ranging from p⊥ = 1.7p‖ (perpendicular beam

or ICRH) to p‖ = 1.8p⊥ (parallel beam) at core. When we go to higher anisotropy like

p⊥ > 1.7p‖ and p‖ > 1.8p⊥, we are unable to reduce the difference of q0 between an

anisotropic case (for example p⊥ = 2p‖) and its opposite case (p‖ = 2p⊥) to less than 1%

when we fix other parameters, since the flux surfaces of an anisotropic equilibrium is not

completely reproducible by an isotropic equilibrium, or an anisotropic equilibrium with

opposite magnitude of anisotropy [101]. Our start point is to identify the difference of

anisotropic stability with equilibria in almost same conditions. Consequently, these higher

anisotropy regimes are not explored here, because we are unable to keep them in these

same conditions. However, our model and code are capable to describe cases with higher

anisotropy, such as the p⊥ = 2.5p‖ discharge in JET.

The continuous spectrum of these examples are then computed by CSMISH-A. Figure

3.1 shows the n = −1 and m = 1, 2, 3 continuous spectrum of three cases : p⊥ = 1.7p‖,

p⊥ = p‖ and p‖ = 1.8p⊥ on axis, for (a) the SA model and (b) the CGL model. The

linear growth rate of the continuous spectra in all these examples is observed to have

γ < 10−8ωA. We note that the small growth rate here is due to numerical errors (e.g.

finite grid resolution) and is reduced by improving numerical precision. Therefore, we

conclude that these continuous modes are stable. As in the ideal MHD spectrum, two sets

of branches, a shear Alfvén set (ω/ωA0 > 0.1) and a slow sound set (ω/ωA0 < 0.1), appear

at higher frequency and lower frequency, respectively. A resonance between m = 2 and

m = 3 shear Alfvén branches occurs at q = 2.5 surface and forms the TAE gap (∆m = 1

gap) around s = 0.6. Meanwhile, a resonance between m = 1 and m = 3 forms the
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EAE gap (∆m = 2 gap) at q = 2 surface around s = 0.4. The coupling between the

shear Alfvén and the slow branches forms the low frequency gaps (∆m = 0 BAE gap).

Moving to the edge, frequencies of the shear Alfvén branches approach infinity as density

approaches zero, while frequencies of the slow waves vanish as pressure goes to zero.
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Figure 3.1: The n = −1, m = 1, 2, 3 continuous spectrum (left axis) and the q profile (right axis)

of a plasma with (a) SA closure (b) CGL closure. The frequency is normalized to ωA0, the Alfvén

frequency on axis, and s =
√

ΨN is the standard flux label. The red dash line, black solid line and

blue dash dot line shows respectively the cases with p⊥ = 1.7p‖, p⊥ = p‖ and p‖ = 1.8p⊥ on axis.

The EAE gap, TAE gap and BAE gap are labeled in each figure.

Figure 3.1 also demonstrates the modification of anisotropy to the continuous spec-

trum. Anisotropy does not modify the main structure of the spectrum and the position

of the gaps, but shifts the gaps and branches. For both models, around the core where

the magnitude of anisotropy is higher, the difference between the three cases with differ-

ent anisotropy is more significant. At the edge where anisotropy is vanishing, the three

spectra merge to one. For the p‖ = 1.8p⊥ case described by the SA model, all the shear

Alfvén branches are lowered (0.01ωA on axis), while the slow branches are shifted up (7%

on axis). For the CGL model, the lowest shear Alfven branch is almost unchanged, while

the frequency of the slow branches increases by 14% on axis. The modification to slow

branches will be investigated in Section 3.6.1. The change of the shear Alfvén branches can

be explained by the change of these branches’ coupling to plasma compressibility through

geodesic curvature, with different anisotropy and different model. Also, the q profile is

only conserved to the reference isotropic case to O(ε2(p‖ − p⊥)/p‖). With ε = 0.3 in our

example, the change of q0 is 0.01 (of 1.7) for the p‖ = 1.8p⊥ compared to the isotropic

reference case, which will sightly modify all the branches. Looking at continuum gaps, the

upper and lower accumulation points of both the TAE gap and the EAE gap are almost

unchanged, meanwhile the upper accumulation point of the BAE gap is shifted up for both

models (8% for SA and 4% for CGL). For the p⊥ = 1.7p‖ case, all the above modifications

are reversed, with a similar magnitude of change.

To understand the modification of anisotropy and the above differences, we study two

specific feature of the continuous spectrum: its cylindrical limit and the low frequency

BAE gap. The former one determines the main frequency of both the shear Alfven and

the slow branches, and the latter describes the shear Alfvén and slow coupling.

3.6.1 the Cylindrical limit

In the cylindrical limit, the equilibrium quantities are free of poloidal angle dependency.

Therefore the coupling between two shear Alfvén branches vanishes. Also, the geodesic
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curvature, which couples the shear Alfvén branches and the slow branches, is zero. Build-

ing on Fitzgerald et al [20], we have computed the continuum in the cylindrical limit. We

retain the ignored (p‖−p⊥)(b1b+bb1) term in the perturbed pressure tensor in Fitzgerald

et al , therefore the missing firehose factor 1−∆ for the single-adiabatic Alfvén branches

is now recovered. The frequency of mode (m,n) is now simply given by

ω2
A,SA = ω2

A,CGL =
(1−∆)B2

ρR2
0

(m/q + n)2, (3.45)

ω2
S,SA =

p‖ + 2
3p⊥

1
3p‖ + 4

3p⊥ +B2

B2

ρR2
0

(m/q + n)2, (3.46)

ω2
S,CGL =

3p‖

2p⊥ +B2

B2

ρR2
0

(m/q + n)2, (3.47)

where R0 is the major radius of the magnetic axis. Here, “A” in the subscript labels

the shear Alfvén branches and “S” labels the slow branches. Inspection of Eq. (3.45)

shows that the cylindrical shear Alfvén continuum is not fluid closure dependent. The

anisotropy modifies these branches by the firehose factor 1 − ∆. This is consistent with

previous results [18, 123]. In contrast, the slow branches, as shown by Fig.3.1, have strong

fluid closure dependency and anisotropy dependency, with ωS,SA 6= ωS,CGL even when the

equilibrium is isotropic. In the isotropic limit, the SA model reduces to the result given

by ideal MHD with adiabatic gas law, while the CGL model does not converge to ideal

MHD. Indeed, the frequency ωS,CGL is roughly 35% larger than ωS,SA when the plasma is

isotropic. As in Eq. (3.46) and (3.47), the frequency of the slow branches with both model

are increasing when p‖/p⊥ increases, if 〈p∗〉 is kept constant, although CGL model shows

more significant change compared to SA. We have compared the result from CSMISH-A

in the cylindrical limit (very large aspect ratio) with Eq. (3.45) to (3.47) for both SA and

CGL, showing very good agreement.

3.6.2 The BAE gap change due to anisotropy

The low frequency gap (BAE gap)[40] appears on the resonant flux surface where

m + nq = 0, and is induced by the finite compressibility of the plasma. Inspection of

Fig.3.1 shows that for different magnitude of anisotropy, the width of this gap is changed.

Also, the gap width is different for the SA and the CGL model, implying its dependency

on fluid closure model. Figure 3.2 zooms in into the q = 2 BAE gap in Fig.3.1 for the

anisotropic case with p‖ = 1.8p⊥ on axis. Only the major m = 2 shear Alfvén branch and

the m = 2 ± 1 slow side bands are shown here. In Fig.3.2, the frequency of the upper,

middle and lowest branches on the resonant flux surface (located at s = 0.38) are labeled

as ω3, ω2 and ω1 respectively. The BAE gap of the SA model has the same structure as an

isotropic plasma described by the MHD model. Its lowest branch approaches zero when

m+ nq = 0, i.e. ω1 = 0. To the contrary, in CGL we have ω1 > 0, inducing an additional

gap at very low frequency.

In this section, we are only interested in ω3, the upper accumulation point of a BAE

gap, which determines the gap width. We study two separate cases, with the gap located

at a low q position (q = 1.33) and a high q position (q = 3), as shown in Fig.3.3 (a) and

(b), respectively. The frequencies in Fig.3.3 are normalized to the analytic ideal MHD
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Figure 3.2: Zooming into the q = 2 BAE gap of the n = −1 continuous spectrum of the

anisotropic case in Fig.3.1 with p‖ = 1.8p⊥ on axis, for (a) the SA model and (b) the CGL model.

The blue dash lines are the incompressible m = 2 shear Alfvén branch. The vertical lines indicate

the flux surface where q = 2, and the incompressible m = 2 shear Alfvén branch hits zero. The

red solid lines are the coupled m = 2 shear Alfvén branch and m = 1, 3 slow branches due to finite

compressibility (SA or CGL), with the frequency of the upper, middle and lowest branches labeled

as ω3, ω2 and ω1 at q = 2 surface, respectively.

value of ω3 for the reference isotropic case [62], written as

ω2
3,MHD =

2γp

(γp+B2)ρR2
0

(
1 +

1

2q2

)
, (3.48)

with γ = 5/3. Figure 3.3 (a) shows that for q = 1.33, the SA closure gives a greater ω3

when p‖ > p⊥, and a smaller ω3 when p‖ < p⊥. It’s almost a linear function of (p‖−p⊥)/p∗.

The change of ω3 is roughly 8% for p‖ ≈ 1.5p⊥ or p⊥ ≈ 1.5p‖, the farthest right and left

data points in the figure. For the CGL closure, ω3 is 7% higher than the isotropic ideal

MHD reference case. It’s dependency on (p‖ − p⊥)/p∗ is almost negligible. Moving to

Fig.3.3 (b) where q = 3, in SA model the dependency of ω3 on (p‖ − p⊥)/p∗ becomes

higher, with a 12% change for p‖ ≈ 1.5p⊥ or p⊥ ≈ 1.5p‖. Meanwhile, the ratio ω3/ω3MHD

decreases to 1.03 in the isotropic case, and the ω3 for CGL has a weak dependency on

anisotropy: about a further 5% change for the extreme cases.
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Figure 3.3: The change of the BAE gap upper accumulation point frequency (ω3) due to the

change of anisotropy for a BAE gap with (a) q = 1.33, n = −3 (b) q = 3.00, n = −1. The local

magnitude of anisotropy is described by the relative difference of p‖ and p⊥, i.e. (p‖ − p⊥)/p∗.

The frequency of ω3 is normalized to the analytic ideal MHD value of ω3 for the reference isotropic

case, as shown by the horizontal dash line. The symbols are numerical results from the CSMISH-A

code: blue squares and solid lines for SA, red circles and solid lines for CGL.
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3.7 Anisotropy impact on the internal kink mode

In this section, we study the impact of anisotropy on the n = 1 internal kink mode

in a tokamak plasma with large aspect ratio (ε = 0.1) and circular cross section. This

also serves as a benchmark of MISHKA-A working as a global normal mode code. For

simplicity, the equilibrium distribution function is taken to be bi-Maxwellian.

We start from a reference isotropic equilibrium with the current profile and the pressure

profile taking the form,

〈j〉 = j0(1−ΨN ), (3.49)

p‖ = p⊥ = p0(1−ΨN ), (3.50)

where j0 and p0 are constants. The density profile is taken to be constant, i.e. ρ = ρ0.

The safety factor on axis, q0, and the ratio of kinetic energy to magnetic energy, β, can

then be adjusted by changing the ratio p0/j0 and the vacuum field. The safety factor q is

monotonically increasing: only one q = 1 surface exists in the plasma. Similar to Section

3.6, based on this reference isotropic case we change the Θ profile with Θ = Θ0 in our

equilibrium code HELENA+ATF, meanwhile keeping 〈p∗〉 = (〈p⊥〉+ 〈p‖〉)/2, 〈j〉 and 〈ρ〉
unchanged. In such a way the q profile and metrics are identical to our reference isotropic

case to O(ε2). The relative anisotropic profile is then approximately given by

〈p⊥〉
〈p‖〉

=
1

1− α(1−ΨN )
, (3.51)

with which the magnitude of anisotropy peaks on axis and vanishes at the boundary. Here

α is an adjustable constant proportional to Θ0.

In the incompressible limit, the plasma kinetic response to the perturbation is ignored.

The stability of the internal kink mode is determined by the sign of the perturbed fluid

toroidal potential energy δWT . When δWT < 0, the plasma is unstable. According to

the analytical calculation of Bussac et al [124] and Mikhailovskii [120, 125], the stability

criterion of the n = 1 internal kink in such a scenario, namely the generalized Bussac

criterion, is described by

δw + βpA > 0, (3.52)

where δw is a quadratic function of the value of βp on the q = 1 surface, with the coefficients

determined by the q profile. The quantity Bussac βp, as a indication of the pressure

gradient, is defined as

βp(Ψ) ≡ 2[p̄(Ψ)− p(Ψ)]

B2
p(Ψ)

, (3.53)

where p̄ is the average pressure inside the certain flux surface, i.e.

p̄(Ψ1) ≡
∫

Ψ<Ψ1

pdS/

∫
Ψ<Ψ1

dS. (3.54)

For anisotropic plasma, βp is replaced by βp∗ ≡ (βp‖ + βp⊥)/2. The second term in Eq.

(3.52), βpA, is obtained from Eq. (3.53) replacing p by (p‖ + p⊥ + ĉ)/2, and taking the

value on the q = 1 surface as well, where ĉ is defined through partial derivative of p⊥ as

B

(
∂p⊥
∂B

)
Ψ

= 2p⊥ + ĉ. (3.55)
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For a bi-Maxwellian plasma, ĉ is simplified to

ĉbM = −2p⊥
2

p‖
. (3.56)

The generalized Bussac criterion takes into account only the lowest order of the poloidal

variation of p̃‖ and p̃⊥, and neglects the shaping effect [86] of pressure anisotropy, leading to

its discrepancy from full numerical results when the fast particle distribution function has

strong and/or complicated poloidal dependency (e.g. with neutral beam heating) [126].

The bi-Maxwellian plasma we use here only has a weak poloidal dependency, satisfying

the use of the generalized Bussac criterion. From Eq. (3.56), βpA is positive when p‖ > p⊥
and negative when p‖ < p⊥. We would expect the plasma to become less stable compared

to the reference isotropic case if p⊥ > p‖ (α > 0) and more stable when p⊥ < p‖ (α < 0).

To obtain the marginal stability boundary numerically, we plot the internal kink growth

rate as a function of β∗p for different α in Fig.3.4 (a). Figure 3.4 (a) shows that in anisotropic

plasma, same as Bussac et al , the linear growth rate of the internal kink mode increases

with β∗p . For the same β∗p , the growth rate is higher when α becomes more positive. On the

other hand, the growth rate is reduced, or the mode is stabilized, when α becomes more

negative. This is in agreement with the prediction of the generalized Bussac criterion.

The critical β∗p at marginal stability is extrapolated from Fig.3.4 (a) by fitting γ into

a quadratic function of β∗p and obtaining the fitted curve’s intersection with the x axis.

Picking different q0 and different α, the marginal stability boundary is then plotted in

Fig.3.4 (b) with a comparison against Eq. (3.52). Figure 3.4 (b) shows that when α = 0,

i.e. the plasma is isotropic, the stability limit given by MISHKA-A is in good agreement

of the analytical Bussac limit. When α > 0 (p⊥ > p‖), the anisotropic incompressible

fluid force is destabilizing, reducing the required pressure gradient to drive the instability.

On the other hand, if α < 0 (p⊥ < p‖), the anisotropic geometry is stabilizing. We note

that when q0 is close to unity, the stabilizing/destabilizing effect is greater, pushing the

stability limit further from the original Bussac limit. This is due to the fact that when q0

is close to 1, the first term in Eq. (3.52), δw, is smaller. Therefore a tiny change in βpA
will lead to a dramatic impact of the stability limit. We also note that the magnitude of

anisotropy in Fig.3.4 is small (with p⊥ = 1.25p‖ on axis for α = 0.2, or p‖ = 1.2p⊥ on

axis for α = −0.2). We would thus expect that a moderate or large anisotropy will have

a much greater impact to the n = 1 internal kink mode.

We observe a small discrepancy between the generalized Bussac criterion (lines) and

the numerical result (symbols) in Fig.3.4(b) for the α < 0 cases. One possible reason is

that in the derivation of the generalized Bussac criterion, the eigenfunction is assumed

to stay the same as the isotropic reference case. Also, the perturbed parallel magnetic

field B̃ and the perturbed parallel flow Ṽ · b are ignored. These neglected features, when

taken into account numerically, may have some impact on the marginal stability limit.

Nevertheless, Fig.3.4 (b) gives a fairly good benchmark of the MISHKA-A code.

The above treatment ignores the compressional response of the plasma and keeps only

the incompressible part. According to the kinetic theory, the compressional response can

either be stabilizing or destabilizing, depending on the fast particle distribution function,

the diamagnetic effects, FLR/FOW effects and other non-ideal effects (see for example

the review of Graves et al [107] and Chapman et al [108]). A full treatment of the n = 1

internal kink mode will require a δf method and possibly the involvement of a kinetic

code. Nevertheless, we can still conclude on that the anisotropic incompressible fluid force
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Figure 3.4: (a) The growth rate of the n = 1 internal kink mode as a function of β∗2p for a plasma

with q0 = 0.9. The parameter α determines the magnitude of anisotropy, with p⊥ > p‖ for α > 0

and p⊥ < p‖ for α < 0. The growth rate γ is normalized to Alfvén velocity VA. (b) The modified

Bussac critical β∗p as a function of q0 for different anisotropy magnitute α. The lines are analytical

result calculated from Eq. (3.52) and the symbols are numerical results extrapolated from (a).

of a plasma with p⊥ < p‖ (α < 0) is more stable than its isotropic counterpart, and

therefore needs less stabilizing effects from kinetic response to stabilize, while a plasma

with p⊥ > p‖ (α > 0) needs more.

Finally, we investigate the compressional response of a plasma described by the CGL

model. We couldn’t find any unstable modes for our choice of current and pressure profile,

despite a scan across parameters 0.6 < q0 < 1, 0 < β∗p < 0.5 and 0.5 < p⊥/p‖ < 2. It’s

long been known that for isotropic plasma we have [25, 26]

δWMHD < δWK < δWCGL, (3.57)

where δWK is the perturbed potential energy given by the kinetic theory. For anisotropic

plasma, although not rigorously proved, it is very likely to have δWK < δWCGL. With the

CGL gives a prediction that the plasma is stable, we can conclude that for our choice of

profiles and parameter space, it is possible to stabilize the internal kink mode by plasma

compressional response.

3.8 Conclusion

We derived and implemented the linearized fluid equations with anisotropy in the

straight field line coordinates based on three fluid closures: the double-adiabatic model

(CGL), the single-adiabatic (SA) model, and the incompressible model. The ideal MHD

normal mode code MISHKA has then been extended to its anisotropic pressure version,

MISHKA-A (and the continuous spectrum code, CSMISH-A). Using these numerical tools,

we find that anisotropy mainly modifies the continuous spectrum by changing the slow

branches and the BAE gap. The change of the slow branches is in accordance with the

analytical result, with a different prediction for the SA model and the CGL model. For

the BAE gap, the lowest branch touches zero at the resonance flux surface for SA/MHD,

but does not for CGL. Meanwhile the change in frequency of the upper accumulation

point depends on the local q value, the magnitude of anisotropy and the fluid closure.

Finally, we study the impact of anisotropy to the internal kink mode numerically. If only

the incompressible fluid force is considered, we find that for a bi-Maxwellian plasma, the

marginal stability boundary is in good agreement with the analytical result of Bussac et
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al and Mikhailovskii: compared to the isotropic case, the plasma is more stable if p⊥ < p‖
and less stable if p‖ > p⊥. Also, a parameter scan reveals that for our choice of profiles

the internal kink mode is stable, if the CGL closure is implemented. This indicates the

possibility for these modes to get stabilized by the plasma compressional response, and

that CGL is too strong for the estimation of instabilities.

In this work we restrict our study to large aspect ratio, low beta plasma, when the

equilibrium can be reproduced similarly by an isotopic equilibrium with an O(ε2(p‖ −
p⊥)/p‖) difference. In the future, we plan to study the impact of anisotropy on global

eigenmodes, and the possibility of using these eigenmodes as MHD spectroscopy to infer

pressure anisotropy. For example, as indicated by the change of the BAE gap due to

anisotropy, the corresponding modification to a global BAE may serve as an estimation of

pressure anisotropy or a validation of the fluid closure model. We also plan to investigate

tokamak plasmas with high β, low aspect ratio and large anisotropy, where the current

profile and q profile are dramatically modified by anisotropy, and where the anisotropy

shaping effect is important. Finally, we plan to study experimental data from MAST, with

the anisotropic equilibria reconstructed by the EFIT-TENSOR code [92], and compute the

wave-particle interaction.

3.9 Appendix: Auxiliary formulas

Here we present the formular for H1, H2, H3 and covariant components of the magnetic

field line curvature κ:

H1 = J(j2B̃3 − j3B̃2)− F

qR2
∂s(g12B̃

1 + g22B̃
2)

+
F

qR2
(∂ϑ + q∂ϕ)(g11B̃

1 + g12B̃
2)− F

R2
∂s(R

2B̃3),

H2 = J(j3B̃1 − j1B̃3) +
F

R2
∂ϕ(g12B̃

1 + g22B̃
2)− F

R2
∂s(R

2B̃2),

H3 = J(j1B̃2 − j2B̃1)−B2∂ϕ(g12B̃
1 + g22B̃

2) +B2B̃3∂ϑR
2,

κ1 = − F

qBR2

(
∂

∂s

q|∇Ψ|2

BF
+ q

∂

∂s

F

B
+ fq

∂

∂ϑ

∇Ψ · ∇ϑ
BF

)
, (3.58)

κ2 = − F

R2B

∂

∂ϑ

(
F

B

)
, (3.59)

κ3 = −κ2

q
. (3.60)

3.10 Appendix: Matrix elements

3.10.1 The momentum equation

The left-hand sides matrix elements B(1, 1), B(1, 2), B(2, 1) and B(2, 2) are identical

to those given in the appendix of Huysmans et al [117] dividing by 1 − ∆. Elements

B(1, 5), B(2, 5) and B(5, 5) are given by

B(1, 5) = iρ0
qR2

FFM
∇Ψ · ∇ϑ, (3.61)
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B(2, 5) = ρ0
qR2

fFFM
|∇Ψ|2, (3.62)

B(5, 5) = ρ0
qR2

FM
|B|2. (3.63)

For Eq. (3.31), the matrix elements A0(1, 3), A0(1′, 3), A0(1, 4), A0(1, 4′), A0(1′, 4)

and A0(1′, 4′) are same as those in the appendix of Huysmans et al and Chapman et al

[118], except that dF/ds in Huysmans et al and Chapman et al is now replaced by ∂F/∂s.

Other A0(i, j) elements coming from Eq. (3.31) are

A0(1′, 6) =
R2

fFM
, (3.64)

A0(1, 6) =
∂

∂s

(
R2

FM

)
1

f
−A0(1, 7), (3.65)

A0(1, 7) =
1

fFMB

(
|∇Ψ|2

qB

dq

ds
+ F

∂

∂s

BR2

F
+ fBF

∂

∂ϑ

∇Ψ · ∇ϑ
F |B|2

)
+i(m+ nq)

∇Ψ · ∇ϑ
FM |B|2

. (3.66)

For Eq. (3.32), the term A0(2, 4) is same as Huysmans et al , but again changed its

dF/ds terms to ∂F/∂s. Other elements are given by

A0(2, 3) = − 1

fqF
(mm̄F 2 + n2q2|∇Ψ|2)− (m̄−m)m

fq
F, (3.67)

A0(2, 4′) =
1

fqF
(m̄F 2 − nq|∇Ψ|2) +

m̄−m
fq

F, (3.68)

A0(2, 6) =
mR2

fFM
−A0(2, 7), (3.69)

A0(2, 7) =
i

fFM |B|3
(|∇Ψ|2∂ϑB − F 2∂ϑB + FB∂ϑF )

+(m+ nq)
|∇Ψ|2

fFM |B|2
. (3.70)

Also, A0(i, j) elements from right-hand side of Eq. (3.33) are listed as following :

A0(5, 3) = i(m+ nq)
F

qR2

∂F

∂ϑ
, (3.71)

A0(5, 4) =
m+ nq

qR2

∂|∇Ψ|2

∂s
+
m+ nq

q2R2F
|∇Ψ|2

(
F
dq

ds
− q∂F

∂s

)
+(m+ nq)

fF

qR2

∂

∂ϑ

∇Ψ · ∇ϑ
F

+ (m+ nq)
F

qR2

∂F

∂s

−i F

q2R2

∂F

∂ϑ

dq

ds
, (3.72)

A0(5, 6) = −i 1

(1−∆)B

∂B

∂ϑ
, (3.73)

A0(5, 7) =
m+ nq

1−∆
−A0(6, 5). (3.74)
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The anisotropy related terms are given by

AA(1, 3) =
1

FM

(
∆β1 +R2∂s∆

)
(mh1 + nh2)

+2n
∇Ψ · ∇ϑ
FM

∂ϑ∆, (3.75)

AA(1, 4) =
∂ϑ∆

FM

[
if(m+ nq)

(
F 2

q3R2|∇Ψ|2
+
∇Ψ · ∇ϑ
q|∇Ψ|2

)
− 2∇Ψ · ∇ϑ

q2

dq

ds

]
+

∆

FM
[h3 + ih4(m+ nq)]β1 +

∂s∆

FM
R2h3, (3.76)

AA(1, 4′) =
∆

FM
h5β1 +

R2

FM
h5∂s∆ + 2

∇Ψ · ∇ϑ
qFM

∂ϑ∆, (3.77)

AA(1′, 3) =
∆R2

FM
(mh1 + nh2), (3.78)

AA(1′, 4) =
∆R2

FM
[h3 + i(m+ nq)h4], (3.79)

AA(1′, 4′) =
∆R2

FM
h5, (3.80)

AA(2, 3) =
∆

FM
(mh1 + nh2)β2 + i

R2∂ϑ∆

FM
(mh1 − nh2), (3.81)

AA(2, 4) =
∆

FM
[h3 + i(m+ nq)h4]β2 − i

R2∂ϑ
FM

h3

−(m+ nq)
|∇Ψ|2∂s∆
fqFM

, (3.82)

AA(2, 4′) =
∆

FM
β2h5 + i

F 2 − |∇Ψ|2

fqFM
∂ϑ∆, (3.83)

AA(5, 3) =
f∆

1−∆
(mh1 + nh2)β3 − in

|B|2∂ϑ∆

1−∆
, (3.84)

AA(5, 4) =
f∆

1−∆
[h3 + i(m+ nq)h4]β3 + i

|B|2∂ϑ∆

q2(1−∆)

dq

ds

−(m+ nq)
|B|2∂s∆
q(1−∆)

, (3.85)

AA(5, 4′) =
f∆

1−∆
β3h5 − i

|B|2∂ϑ∆

q(1−∆)
, (3.86)
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in which

β1 = −2R2

B

∂B

∂s
− ∂R2

∂s
+ 2

R2

F

∂F

∂s
− R2

FM

dFM
ds

−2if(m̄+ nq)
∇Ψ · ∇ϑ
|B|2

+ 2f
∇Ψ · ∇ϑ
F |B|2

∂F

∂ϑ

−2|∇Ψ|2

q|B|2
dq

ds
, (3.87)

β2 = 2i
F

|B|2
∂F

∂ϑ
− 2i

R2

B

∂B

∂ϑ
− i∂R

2

∂ϑ
+ m̄R2

−2(m̄+ nq)
|∇Ψ|2

|B|2
, (3.88)

β3 = −i ∂ϑ∆

(1−∆)2
− 2i

1

B

∂B

∂ϑ
− (m̄+ nq), (3.89)

and

h1 = − F 2

fqR2
, h2 =

|∇Ψ|2

fR2
, h3 = − |∇Ψ|2

fq2R2

dq

ds
,

h4 =
∇Ψ · ∇ϑ
qR2

, h5 =
|B|2

fq
. (3.90)

3.10.2 The ideal Ohm’s law

For the ideal Ohm’s law equations (Eq. (3.25) and (3.26)), we have

B(3, 3) = A0(3, 2) = 1, (3.91)

B(4, 4) = −A0(4, 1) = 1, (3.92)

3.10.3 The single/double-adiabatic fluid closure equations

The matrix element B(6, 6) and B(7, 7) are identical to Chapman et al B(7, 7). For

the single/double-adiabatic model Eq. (3.34) and (3.35), the A0(i, j) elements are given

by

A0(6, 1′) = −γ⊥1
R2

F
, (3.93)

A0(6, 1) = −γ⊥1
∂

∂s

(
R2

F

)
− if(m̄+ nq)γ⊥1

∇Ψ · ∇ϑ
F |B|2

−f∇Ψ · ∇ϑ
F |B|2

∂

∂ϑ
(f⊥ − γ⊥1)− R2

F

∂f⊥
∂s

+γ⊥2

[
−|∇Ψ|2

F |B|2
dq

ds
− q

B

∂

∂s

BR2

F
+
fq

B

∂

∂ϑ

∇Ψ · ∇ϑ
BF

]
, (3.94)

A0(6, 2) = γ⊥1
F

|B|2
(n
q|∇Ψ|2

F 2
− m̄) + i

F

|B|2
∂

∂ϑ
(f⊥ − γ⊥1)

+iγ⊥2
1

B

∂

∂ϑ

F

B
, (3.95)
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A0(6, 5) = −γ⊥1(m̄+ nq)− γ⊥2(m+ nq) + i
∂

∂ϑ
(f⊥ − γ⊥1)

+iγ⊥2
1

B

∂B

∂ϑ
, (3.96)

Replacing f⊥ by f‖, γ⊥1 by γ‖1 and γ⊥2 by γ‖2, we will reach the matrix elements A0(7, 1′),

A0(7, 1), A0(7, 2) and A0(7, 5).

3.10.4 The incompressible fluid closure

The matrix element B(6, 6) and B(7, 7) are identical to Chapman et al B(7, 7). The

A0(i, j) elements originated from Eq. (3.10) and (3.11) are given by

A0(4, 1) = −R
2

F

(
∂p⊥
∂s
− ∂ϑp⊥
∂ϑB

∂B

∂s

)
, (3.97)

A0(7, 1) = −R
2

F

(
∂p‖

∂s
−
p‖ − p⊥
B

∂B

∂s

)
. (3.98)
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Chapter 4

Application to MAST discharges

and the impact on wave-particle

interactions

Abstract

A number of tools have recently been developed to study equilibrium and

stability in tokamaks with pressure anisotropy. Here we apply these tools to a

Mega Ampere Spherical Tokamak (MAST) discharge to calculate equilibrium,

Alfvén continua and eigenmodes, through to linear growth and nonlinear sat-

uration of a toroidal Alfvén eigenmode (TAE); this is the first study of wave

growth and saturation for anisotropic equilibria. Comparisons with the stan-

dard tools which assume an isotropic pressure reveal various differences in

equilibrium and modes: the safety factor profile in the isotropic reconstruction

is reversed shear while the anisotropic reconstruction gives normal shear; the

isotropic TAE gap is much narrower than the anisotropic gap; and the TAE

radial mode structure is wider in the anisotropic case. These lead to a mod-

ification in the resonant regions of fast-ion phase space, and produce a 35%

larger linear growth rate and an 18% smaller saturation amplitude for the TAE

in the anisotropic analysis compared to the isotropic analysis.

4.1 Introduction

External heating in modern tokamaks can lead to momentum injection and velocity-

space or pressure anisotropy. Such physics can displace flux surfaces outwards, and lead to

additional currents that can modify the magnetic configuration and change plasma wave

modes and stability. For instance, for values of p⊥/p‖ ≈ 1.5, p⊥ can vary by 20% at

mid-radius for a spherical tokamak equilibrium [101]. A number of authors report that

the experimentally inferred equilibrium, and in particular the on-axis safety factor, can

be significantly different if a single pressure is assumed rather than anisotropic pressures

[76, 77, 89]. Qu et al [101] find that these differences increase with increasing anisotropy

and inverse aspect ratio. At high beta the impact of anisotropy is non-perturbative:

recent work [127] has shown that at very high beta the impact of non-zero anisotropy is

to eliminate the diamagnetic hole that would otherwise be present in isotropic plasmas

[128, 129], even with flow [130]. Further discussion on the impact of anisotropy can be

found in the contemporary topical reviews by Pustovitov [84] and Hole and Fitzgerald

[116].

61
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Figure 4.1: Evolution of discharge #29221. Figure (a) shows neutron rate, (b) plasma current

Ip, (c) neutral beam power PNBI (blue is the SS supercusp beam, red is the SW chequerboard

beam, and black is the total), (d) the normalised beta βn, (e) the core safety factor q0, (f) the line

integrated electron density ne. The quantities q0 and βn are inferred quantities computed using

EFIT.

In recent years a range of new tools has been developed to model high-performance

plasmas and understand the change in plasma wave mode and stability. EFIT TENSOR

[92] is a modification of the existing force-balance solver EFIT++, which is constrained

to external magnetic measurements and temperature and density profiles, together with

user-input constraints of on-axis safety factor. EFIT TENSOR adds kinetic constraints p‖
and p⊥ and a toroidal flow profile. HELENA+ATF [101] is a fixed boundary solver that

includes anisotropy and toroidal flow, and computes the field configuration in the metric

used by MHD stability code MISHKA [59]. We have also developed a new single adiabatic

stability theory for anisotropic plasma that reverts to MHD in the isotropic limit [20],

and implemented this and double-adiabatic closure in the extended MHD stability code

MISHKA-A [131]. In tandem to these developments we have also deployed Bayesian infer-

ence techniques to infer both the toroidal and poloidal rotation profiles [77] and energetic

particle pressure [89, 132].

In this work we apply these advances in theory and computational models to study

mode activity in the UK Mega Ampere Spherical Tokamak (MAST). MAST discharge

#29221, produced during a power-density scan set of experiments [133], was a 3.1 MW
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Figure 4.2: Spectrogram of discharge #29221. The white trace is the TAE frequency, vA/2q0R,

using the q0 value in Fig.4.1(e).

two-beam heated plasma (a South-South (SS) “supercusp” beam operating at 1.5 MW and

a South-West (SW) “chequerboard” beam operating at 1.6 MW) with a plasma current

of 0.9 MA and normalised beta βn ≈ 3. Figure 4.1 is time trace of the evolution of the

discharge, and Fig.4.2 a spectrogram of magnetic perturbation coil data. The magnetics

reveal a rich range of activity, including: suspected low-frequency (10 kHz) tearing modes

at 170 ms; toroidal Alfvén eigenmodes (TAEs) from 150 ms to 220 ms with frequency

ramping down from 100 kHz to 50 kHz; chirping-down fishbones from 250 ms to 300 ms;

and beyond 280 ms, long-lived mode activity. Keeling et al [133] focused on the fishbone

phase just prior to long-lived mode activity. Our focus is the TAE mode activity at 190

ms, where a high fidelity TRANSP simulation is available. At this time the observed mode

frequency is ≈ 70 kHz, with a frequency chirp of 20 kHz across a 2 ms slice (≈ 80 kHz

mode frequency at 189 ms and ≈ 60 kHz at 191 ms). Toroidal mode number analysis

shows that n = 1 for these modes.

4.2 Equilibrium and mode calculation

In this work, we examine two equilibrium reconstructions for MAST #29221 using

different models and assumptions. The first “anisotropic” equilibrium is reconstructed

by EFIT TENSOR, from experimental constraints such as the external coils, the total

current, the Motional Stark Effect (MSE) spectroscopy, and kinetic constraints (p‖ and

p⊥) from TRANSP simulations with an empirical fast particle diffusivity that provided a

match to the measurements of neutron diagnostics. The second “isotropic” equilibrium

is reconstructed by EFIT++ (isotropic) with the same constraints, except that the flux-

surface averaged 〈p∗〉, where p∗ ≡ (p‖ + p⊥)/2, is used as the kinetic constraint. The

isotropic and anisotropic flux surfaces are shown in Fig.4.3. Both reconstructions give

strongly shaped flux surfaces with an X-point at R ∼ 0.55 m and Z ∼ 1.2 m; there

is a small relative displacement between the isotropic and anisotropic flux surfaces and

magnetic axes. The pressure profiles are plotted in Fig.4.4 as a function of major radius

along the midplane (Z = Zmag). It is interesting to note that although both cases are

constrained to MSE, the q profiles are substantially different, as shown in Fig.4.5; here q

is graphed as a function of the normalised poloidal flux coordinate s ≡
√
ψ/ψedge. The q



64 Application to MAST discharges and the impact on wave-particle interactions

0 0.5 1 1.5
−1

−0.5

0

0.5

1

R(m)

Z
(m
)

Figure 4.3: Flux surfaces for the isotropic (red solid line) and anisotropic (blue dashed line)

equilibrium reconstructions, with the crosses showing the location of the respective magnetic axes.

profile in the isotropic equilibrium is reversed shear, while for the anisotropic equilibrium

it is normal shear with a “dip” on-axis. Finally, we note that both q profiles have a flat

region for s < 0.6.

The EFIT++ (EFIT TENSOR) flux functions and the last closed flux surface are used

as inputs to the fixed-boundary equilibrium solver HELENA (HELENA+ATF) to obtain

the metrics in straight-field-line coordinates for the isotropic (anisotropic) equilibrium.

The continuous spectra of the isotropic and anisotropic equilibria are then calculated by

CSMISH [117] and CSMISH-A [131], respectively, each using the density profile n(s) =

n0(1−0.7s2) as a reasonable fit to the Thomson scattering data, with n0 = 2.42×1019 m−3

the on-axis number density. Figure 4.6(a) is an overview of the n = 1 incompressible

continuum for each equilibrium. Three gaps (TAE, EAE, and NAE, respectively induced

by the toroidicity, ellipticity, and triangularity) exist in the frequency range 0 ≤ ω ≤
1.5ωA0 where ωA0 = B0/R0

√
µ0ρ0 is the Alfvén frequency at the magnetic axis. The TAE

gap of the isotropic equilibrium is much narrower than that of the anisotropic equilibrium,

due mainly to the difference in the q profile shown in Fig.4.5. The m = 1 and m = 2

continua intersect at the q = 1.5 surface which is located at s ≈ 0.3 for the anisotropic

equilibrium. However, for the isotropic equilibrium, two q = 1.5 surfaces exist (at s = 0.15

and s = 0.5) due to the reverse shear. The intersection at s = 0.15 will create a much

narrower gap, since the inverse aspect ratio ε = r/R is smaller and thus the toroidicity

effects are weaker. Finally, we note that the EAE and NAE gaps are closed in both

equilibria.

The continuum gaps allow the existence of robust global modes that are free from

continuum damping. In this work, we will focus on n = 1 TAEs that are observed on
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Figure 4.4: The pressure profiles along the midplane for the isotropic and anisotropic equilibria.
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Figure 4.5: (a) The q profile and (b) q′(s) for the isotropic equilibrium (blue dashed line) and

anisotropic equilibrium (red solid line).

the Mirnov coil spectrogram. The corresponding TAE gap is shown in Fig.4.6(b). We

use MISHKA and MISHKA-A to calculate the TAEs for the isotropic and anisotropic

equilibria, respectively. Two TAEs are found for the isotropic case due to the reverse

shear, one of which is core localised (s < 0.2) and therefore less likely to be picked up by

the external coils. The frequency of this core mode is 78.2 kHz, just 0.1 kHz above the

lower continuum tips. The other, however, is a global mode with a frequency of 81.3 kHz,

with the radial mode structure shown in Fig.4.7(a). For the anisotropic equilibrium, a

global mode is also found at 88.9 kHz. The radial mode structure, especially the m = 2

harmonic, is broader compared to the isotropic one, as seen in Fig.4.7(b).

4.3 Stability

4.3.1 Physical background and method

Alfvén waves can be driven unstable by fast ions produced by neutral beam injection.

For shear Alfvén waves, which are transverse electromagnetic waves, the drift motion of

the fast ions gives the dominant contribution to the wave-particle interaction [32]. The

power transfer between fast ions and shear Alfvén waves is approximately proportional to

vd ·E⊥, with vd the drift velocity and E⊥ the transverse electric field. Net energy transfer

therefore requires that vd · E⊥ averaged over many periods be non-zero, leading to the
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Figure 4.6: The n = 1, m = 1—11 incompressible continuous spectrum and the TAE frequencies

of the isotropic equilibrium (red solid line) and anisotropic equilibrium (blue dashed line), where the

frequency ω is normalised by the on-axis Alfvén frequency ωA0, and s =
√
ψ/ψedge is a normalised

poloidal flux coordinate. Figure 4.6(a) shows the spectrum over a large frequency range with the

TAE, EAE, and NAE gaps labelled, and Fig.4.6(b) shows a magnification of the TAE-gap frequency

range, with the horizontal lines representing the TAE frequencies found by MISHKA(-A).

resonance condition [32, 134, 135]

Ωn,l = ω + lωθ − nωφ = 0, (4.1)

where n is the toroidal mode number, l is an integer, ω is the angular wave frequency, and

ωθ and ωφ are respectively the toroidal and poloidal orbit frequencies.

The energy transfer between waves and particles depends on a number of factors [32].

The first is the relative amplitudes of the poloidal harmonics of the eigenmode, which will

affect the strength of the different resonances. The growth rate γ of the wave amplitude

depends on the slope of the distribution function at resonance through [32]

γ ∝ ω ∂f
∂E

+ n
∂f

∂Pφ
, (4.2)

where Pφ = mRvφ − Zeψ is the toroidal angular momentum. Since Pφ increases as ψ de-

creases, a negative gradient ∂f/∂ψ drives wave growth. Energy transfer is also dependent

on the alignment of the particle orbit and eigenmode. The energy transfer is maximised

when the drift-orbit width ∆b is comparable to the eigenmode width ∆m [32, 136, 137]. In

the case where these widths are not comparable, large orbit-width theory (∆b � ∆m) pre-

dicts a reduced power transfer than that obtained in narrow-orbit width theory (∆b � ∆m)

[138, 139].

A quantitative treatment of the wave-particle energy transfer requires a numerical

solution of the assumed model for the wave-particle interaction. The HAGIS code [61] is a

nonlinear perturbative code that solves the drift-kinetic equation in toroidal geometry for

a distribution of fast particles and a set of Alfvén eigenmodes. The fast particle motion

is described in HAGIS by a guiding-centre Hamiltonian in Boozer coordinates, with the

assumption of isotropic bulk plasma pressure.

A rigorous approach to modelling the wave-particle interaction in plasmas with pres-

sure anisotropy requires the use of an anisotropic Hamiltonian. A guiding-centre Hamil-

tonian in Boozer coordinates for plasmas with pressure anisotropy has been derived
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in [140, 141]. Unlike in the isotropic case, it is the lines of effective current density

K ≡ ∇ × (σB)/µ0 (with σ ≡ 1 − µ0(p‖ − p⊥)/B2) which lie on flux surfaces [12, 142];

that is, K ·∇ψ = 0 rather than J ·∇ψ = 0, where J is the true current density. From the

conditions K ·∇ψ = 0 and ∇·K = 0, the magnetic field can be expressed in the covariant

Boozer representation as σB = g(ψ)∇φ + I(ψ)∇θ + g(ψ)δ(ψ, θ)∇ψ. This modifies the

expressions for the canonical momenta relative to the isotropic case, and thus changes the

equations of motion. The rigorous approach to modelling the wave-particle interaction

with pressure anisotropy would involve implementing these new equations of motion into

HAGIS.

In this paper, however, we propose an approximate method for the inclusion of pres-

sure anisotropy in wave-particle interaction studies without the need to modify the HAGIS

code. First, the anisotropic equilibrium is computed using HELENA+ATF. Flux sur-

face averages are then calculated for the toroidal current Jφ and for p∗ ≡ (p‖ + p⊥)/2.

We then input these 〈Jφ〉(ψ) and 〈p∗〉(ψ) into the standard HELENA code (with 〈p∗〉
taken as the “isotropic” pressure), applying the same boundary conditions as in HE-

LENA+ATF, and rescale the total current such that the q-profile matches that obtained

from HELENA+ATF. The use of this remapped equilibrium and isotropic Hamiltonian

is appropriate if the particle orbits match those for the fully anisotropic equilibrium and

anisotropic Hamiltonian.

Here, to assess the validity of the approximate approach, we have calculated trapped

and passing orbits using the full-orbit code CUEBIT [143] for MAST #29221 for both

the full anisotropic and remapped equilibria. We show an example of a co-passing orbit

in Fig.4.8 for a given particle energy E and orbit-invariant Λ ≡ µB0/E. We find that the

poloidal orbit frequencies of the passing particle in the full anisotropic and remapped cases

are 118.6 kHz and 119.4 kHz respectively, so the remapped orbit frequency is less than

1% larger than the anisotropic orbit frequency. In addition, we see from Fig.4.8 that the

guiding-centre particle trajectories are similar. Since the particles have the same initial

value of major radius (R = Rmax) along the equatorial plane (Z = Zmag) on the low-field

side, the difference between these particle orbits is largest on the equatorial plane on the

high-field side whereR = Rmin. We find that the difference inRmax−Rmin is approximately

1 cm, thus the relative difference in Rmax −Rmin is approximately 2%. We obtain similar

results for passing orbits with different E and Λ and also for trapped orbits. These results

for the particle orbits suggest that our approach will give a good approximation to the

wave-particle dynamics. A detailed assessment of the impact of using the approximate

approach on the particle orbits in Boozer coordinates will be pursued in future work.

4.3.2 Calculations

We now compute with HAGIS the resonant regions of fast-ion phase space for the n = 1

TAE calculated in Section 4.2. The toroidal orbit frequency of ions is calculated using

ωφ = 〈φ̇〉 =
∮
φ̇dt/

∮
dt = ∆φ/∆t, where the integral is performed over a single poloidal

orbit. The poloidal orbit frequency is calculated as ωθ = 2π/∆t. TRANSP simulations

for MAST #29221 show that the fast-ion pitch-angle distribution f(λ) is approximately

a Gaussian centred at λ = λ0 = 0.92 with a width ∆λ = 0.5, where λ ≡ v‖/v is the pitch

taken at the equatorial plane at the low-field side of the plasma cross section (R > Rmag).

The focus of this paper is to illustrate the difference between the isotropic and anisotropic

cases, so here we choose an idealised delta-function distribution, f(Λ) = δ(Λ), where Λ

is related to the pitch via Λ = B0(1 − λ2)/B. Such a choice of distribution function is
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Figure 4.7: The n = 1 global TAE radial structure of (a) the isotropic equilibrium and (b) the

anisotropic equilibrium.

justified by the fact that most well-confined beam ions in MAST are in passing orbits.

Resonance maps for the n = 1 TAE calculated in Section 4.2 are graphed for the

isotropic and anisotropic equilibria and wave frequencies in Fig.4.9 as a function of s2 and

particle energy E. For both the isotropic and anisotropic cases the l = 0 resonance occurs

at E . 3 keV for all s. This resonance will not drive wave growth due to the strong energy-

gradient damping. The broad l = 1 resonance is significantly different between these cases;

for a given particle energy the resonant region is located closer to the magnetic axis in

the anisotropic case. No resonances for l ≥ 2 are found in the energy range considered.

(We note that these resonance maps are qualitatively similar to those in [144] for MAST

#29210, calculated for ions with Λ = 0.3 resonating with a n = 1 TAE.)

We now examine the difference in the wave amplitude evolution between the isotropic
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Figure 4.8: Fast ion orbits calculated using CUEBIT for the full anisotropic equilibrium (blue)

and the remapped equilibrium (red) for MAST #29221 for ions with E = 21 keV and Λ = 0.72,

where (a) and (b) show the poloidal projection and top view of the particle orbits respectively.
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Figure 4.9: Resonance maps for ions with Λ = 0 for (a) isotropic equilibria and n = 1 TAE of

frequency 81.3 kHz, and (b) anisotropic equilibria and n = 1 TAE of frequency 88.9 kHz, with the

bounce harmonics l labeled. Colour indicates the value of − log10(
∑
l 1/|Ωn,l|), which is large and

negative at resonances.

and anisotropic cases. The initial fast ion distribution function fh is chosen as a slowing-

down distribution in energy and a Gaussian distribution in the radial coordinate s (as in

existing fast-ion physics studies on MAST [145, 146]):

fh(E, s,Λ) =
C

E3/2 + E
3/2
c

Erfc

[
E − E0

∆E

]
exp

[
− s2

(∆s)2

]
δ(Λ). (4.3)

Using measured physical quantities at t = 0.190 s and fitting to TRANSP simulation

data we estimate the values Ec = 16 keV, E0 = 65 keV, ∆E = 1.5 keV, ∆s = 0.5,

with the normalization constant C chosen such that the on-axis fast ion density is nh =

3.5 × 1018 m−3. For our HAGIS simulations we choose 300000 markers to represent the

fast ion population, and choose the integrator time step such that both the particle and

wave integrators make 64 steps per wave period.

HAGIS calculations of the wave amplitude evolution are shown in Fig.4.10. We find

that the linear growth rate for the isotropic case is γiso/ωiso = 2.08 × 10−2, while for

the anisotropic case γaniso/ωaniso = 2.81 × 10−2. To explain this difference of ≈ 35%

in the growth rates we first compare the drift-orbit widths and mode widths. We see

from Fig.4.5(a) that qaniso > qiso for s & 0.25. The resonant particles in the isotropic

(anisotropic) case are located at s & 0.7 (s & 0.5) (see Fig.4.9) and thus the safety factor

is larger in the anisotropic case at the location of all resonant particles. The drift-orbit
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Figure 4.10: Wave amplitude δB/B0 for the isotropic (red solid line) and anisotropic (blue dashed
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Figure 4.11: Linear growth rate γL/ω for different fast-ion density fractions nh/n0, with the

isotropic case in red and the anisotropic case in blue. The square markers show the growth rates

for the measured MAST #29221 fast-ion density, nh = 3.5× 1018 m−3.

width of circulating particles ∆b is dependent on the safety factor through ∆b ≈ qρ‖
(which was found to be a reasonable approximation for a spherical tokamak [147]), with

ρ‖ = v‖/Ωb where Ωb is the beam-ion gyrofrequency. The larger q in the anisotropic case

thus leads to a larger ∆b. Since the mode widths ∆m of the dominant poloidal harmonics

satisfy ∆m & ∆b, the larger orbit widths in the anisotropic case are more comparable

to the mode widths and are thus more favourable for mode drive. In addition, the l = 1

resonance shown in Fig.4.9 occurs at smaller ψ for the anisotropic case; the radial gradient

∂f/∂ψ ∝ exp[−(ψ/ψedge)/(∆s)
2] is therefore larger at resonance in the anisotropic case,

again leading to a larger growth rate through (4.2). HAGIS calculations for different

fast-ion number densities nh, shown in Fig.4.11, give larger linear growth rates in the

anisotropic case than the isotropic case for each value of fast-ion number density.

Mode saturation is reached when the nonlinear bounce frequency of the trapped par-

ticles is similar to the linear growth rate, so that the fast depletion of wave energy by the

trapped particles suppresses further wave growth [148]. The bounce frequency scales ap-

proximately as δB1/2; mode saturation thus occurs when the field amplitude is sufficiently
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rameters, and the dashed lines show least squares fits to a linear function with slope 2.

large such that ωb ∼ γL, giving δBsat ∝ γ2
L. Although γL is larger in the anisotropic case,

we find that the wave amplitude in the initial stage of saturation is 18% smaller in the

anisotropic case (δB/B0 = 4.9×10−3) than in the isotropic case (δB/B0 = 6.0×10−3). To

help explain this result we show in Fig.4.12 a graph of log10(δB/B0)sat versus log10(γL/ω),

with the data points corresponding to the linear growth rates in Fig.4.11. Both the

isotropic and anisotropic cases are well fitted by the scaling δB/B0 = D(γL/ω)2, with D a

numerical constant of proportionality. We find in the isotropic case that D = 15.8, while

in the anisotropic case D = 6.8. The smaller value of the constant D in the anisotropic

case results in a smaller saturation amplitude, despite its larger growth rate. A possible

explanation for the significant difference between the proportionality constants is that the

bounce frequency is dependent on the equilibrium and mode structure. An analytical es-

timate of the saturation amplitude for a single poloidal harmonic of a TAE in a tokamak

with circular flux surfaces gives a bounce frequency that depends on both the safety factor

and magnetic shear (among other quantities) [149]. The safety factor and magnetic shear

are significantly different between the isotropic and anisotropic cases (see Fig.4.5), which

may substantially account for the difference between the proportionality constants.

4.4 Conclusion

We have analysed equilibrium and stability for MAST discharge #29221 with the

assumptions of both isotropic and anisotropic pressure. We find that quantities calculated

under these two assumptions can be significantly different. The safety factor profile is

qualitatively different between the two cases: in the isotropic case it is reversed shear,

while in the anisotropic case it is normal shear. This difference leads to the TAE gap of

the isotropic equilibrium being much narrower than that of the anisotropic equilibrium.

The anisotropic n = 1 TAE is found to have a larger radial width and slightly higher

frequency than the isotropic TAE.

We find a significant modification to the resonant regions of phase space between the

isotropic and anisotropic cases, with the anisotropic l = 1 resonance shifted radially inward

for given particle energy relative to the isotropic case. We also find a 35% larger linear
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growth rate in the anisotropic case compared to the isotropic case, while the anisotropic

saturation amplitude is 18% smaller than the isotropic saturation amplitude. The linear

growth rate for the anisotropic case is larger as the drift-orbit width is a closer match

to the mode width, and the radial gradient of the distribution function at resonance is

larger. Conversely, the saturation amplitude for the anisotropic case is slightly smaller

despite the larger linear growth rate; this may be due to the differences in the safety

factor and magnetic shear affecting the nonlinear bounce frequency. Further analysis,

including studies of additional discharges and parameter scans of input quantities, will be

needed to determine the likely and potential impact of pressure anisotropy on equilibrium

and stability.

In these calculations we have neglected wave damping from the background plasma,

as well as the effect of collisions on the fast ion distribution. Inclusion of these effects

can modify the saturation amplitude and lead to various frequency sweeping behaviours

depending on the relative magnitudes of the different collision terms [150]. The frequency

sweeping and the mode turn-off occurring 2 ms after onset, observed in the spectrogram in

Fig.4.2, indicate that these effects are important in this MAST discharge. The impact of

anisotropy on the frequency sweeping behaviour and saturation amplitude when damping

and collisions are taken into account will be assessed in future work.



Chapter 5

Fluid theory of the reactive

EGAMs: local treatment

Abstract

An unstable branch of energetic geodesic acoustic mode (EGAM) is found

using the fluid theory with fast ions characterised by their narrow width in

energy distribution and collective transit along field lines. This mode, with a

frequency much lower than the thermal GAM frequency ωGAM, is now con-

firmed as a new type of unstable EGAM : a reactive instability similar to the

two-stream instability. The mode can have very small fast ion density thresh-

old when the fast ion transit frequency is smaller than ωGAM, consistent with

the on-set of the mode right after the turn-on of the beam in DIII-D experi-

ments. The transition of this reactive EGAM to the velocity gradient driven

EGAM is also discussed.

Note: Detail derivations are given in Appendix A.

5.1 Introduction

Recent experiments [45, 151, 152] with neutral beam injection show bursting n = 0 ax-

isymmetic modes at half of the thermal geodesic acoustic mode (GAM) [62, 73] frequency,

which are identified as the energetic-particle-induced GAMs (EGAMs). The presence of

EGAMs are found responsible for fast ion losses [153] and may enhance turbulence trans-

port, leading to the destruction of internal transport barriers [66] and the degradation

of fusion confinement. Many efforts have been made to model [46, 154, 155, 156, 157]

and simulate [158, 159, 160, 161] EGAMs both linearly and nonlinearly using a kinetic or

hybrid-kinetic theory. One of the major outcomes is the discovery of multiple branches

of GAMs in the presence of fast particles. The lower frequency branch is excited by the

inverse Landau damping provided by the fast ions. In tokamaks, most of these works

assume a fast ion distribution with a large width in energy (e.g. the slowing down distri-

bution function). However, the magnetic spectrogram in DIII-D experiments [45] showed

a turn-on of the mode 1ms right after the beam switched on, much faster than the beam

slowing down time(∼ tens of ms), indicating that the beam ions are not slowed down when

the mode first appears. Also, due to the limited width in energy distribution, the beam

may not provide sufficient inverse Landau damping to enable the growth of the mode.

One possible explanation is proposed by Berk et al [154], in which the early EGAMs are

negative energy modes, the presence of whom will reduce the total energy of the system.

They are driven unstable by fast ion Landau damping.
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Due to its simplicity and intuitive nature, the fluid theory, if its regime of validity is

properly considered, may shed light on the underlying physics which may otherwise be

confused with wave-particle interaction physics. By using a fluid description of the fast

ions, we have found a new class of unstable EGAMs associated with beam ions. These

EGAMs are similar to the two stream instabilities rather than driven by the inverse Landau

damping. They have a high growth rate (∼ 30% mode frequency) which increases steeply

as fast ion density increases, consistent with the early turn-on of the mode.

5.2 Model

We consider a tokamak plasma with large aspect ratio, circular cross section and low

β. The flux surfaces are concentric and labeled by radial coordinate r, while θ and ϕ give

the poloidal and toroidal angle, respectively. In this work, we adopt a local treatment,

making ρs < qρs � LEGAM where LEGAM is the width of the mode, ρs the Larmor radius

and qρs gives approximately the drift orbit width. The change of equilibrium quantities

in radial direction is ignored. We assume that the plasma consists of thermal and fast

ions, all with mass mi and unity charge e, as well as electrons with negligible inertia and

negative charge −e. Thermal ions have density ni and temperature Ti, while for fast ions,

the density nf , the parallel pressure p‖f and the perpendicular pressure p⊥f are obtained

by integrals of the fast ion guiding center distribution. The thermal ions are static with

Vi = 0. The fast ions have an average transit speed Vf along the field lines.

The dynamics of the system is determined by the linearized momentum equation of

each species “s”, given by

msns

(
∂Ṽs
∂t

+
ñs
ns
Vs · ∇Vs + Vs · ∇Ṽs + Ṽs · ∇Vs

)
= nsqs(−∇Φ̃ + Ṽs ×B)−∇ · P̃ , (5.1)

in which qs is the charge, Φ̃ the perturbed electrostatic potential, P̃ = p̃⊥I + (p̃‖ − p̃⊥)bb

the perturbed pressure tensor, with b = B/B and B the magnetic field. The subscript “s”

labels electrons (e), thermal ions (i) or fast ions (f) and the circumflex labels the perturbed

quantities. The perturbed velocity consists of the perpendicular and parallel components,

written as

Ṽs = ṼE + [Ṽs+(r)eiθ + Ṽs−(r)e−iθ]b, (5.2)

where ṼE is the E ×B drift velocity. Considering the small orbit width assumption, we

only retain the m = 0 component of Φ̃ for the E ×B drift and m = ±1 components of

parallel velocity that are lowest order in qρs, while the magnetic gradient/curvature drifts

are higher order terms and therefore ignored. Now ṼE is in the direction of π = er × b.
Similarly, the perturbed density and pressure are decomposed into m = ±1 harmonics,

for instance, ñi = ñi+1e
iθ + ñi−1e

−iθ.

The ion response to ṼE is described by the Chew-Goldberger-Low (CGL) law [15],

assuming that the ion perpendicular and parallel pressure are doing work independently.

An agreement is reached between the CGL and the gyrokinetic theory on the thermal

GAM frequency [74, 75]. It has also been shown that when the mode frequency is much

higher than the thermal frequency of the bulk ions (in conventional GAM, q � 1) the

CGL law can give a good description of the plasma response [23, 24]. This CGL law is
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given by

dp̃‖s
dt

= −p‖s∇ · Ṽs − 2p‖sb · (b · ∇Ṽs), (5.3)

dp̃⊥s
dt

= −2p⊥s∇ · Ṽs + p⊥sb · (b · ∇Ṽs). (5.4)

The response of electrons is assumed to be isothermal, which means

p̃e = ñeTe = (ñi + ñf )Te, (5.5)

from the quasi-neutrality condition, while ñi and ñf are obtained from the ion continuity

equation given by
∂ñs
∂t

= −∇ · (nsṼs + ñsVs). (5.6)

We can simplify Eq. (5.3), (5.4) and (5.6) using the identity

∇ · π ≈ −π · ∇ lnB ≈ (b · ∇π) · b = −κg ≈ − sin θ/R, (5.7)

which are all considered as geodesic curvature, giving the relationship between the per-

turbed pressure and perturbed velocity. Recall that π = er × b. We substitute these

relationships into Eq. (5.1) to eliminate the perturbed pressures.

Adding up Eq. (5.1) for electrons, thermal and fast ions, ignoring electron inertia,

imposing the quasi-neutrality condition ∇· J̃ = 0 (J̃ is the perturbed current) and taking

a flux surface average, we obtain the perpendicular momentum equation. The parallel

momentum equations for thermal and fast ions are obtained from the parallel component

of Eq. (5.1), with the potential terms canceled using the same equation for electrons.

These equations close the system and define the dispersion relationship D(ω) = 0, where

ω is the mode complex angular frequency (γ = Im(ω) gives the growth rate). In the q � 1

limit where the coupling to the thermal ion sound wave is ignored, D(ω) is given by

D(ω) = 1− (1− α)
ω2

GAM

ω2
− αG(ω), (5.8)

where ω2
GAM = 2Ti

miR2

(
7
4 + Te

Ti
+O( 1

q2 )
)

is the square of the thermal GAM frequency and

α ≡ 〈nf 〉/ntotal is the fast population fraction. The exact form of G(ω) depends on the

fast ion distribution function, but since the fluid theory has ignored Landau Damping

effects, G(ω) is real if Im(ω) = 0.

We first consider a bump-on-tail distribution function given by

F (v‖, v⊥) = nfA exp

[
−
m(v‖ − Vf )2 +mv2

⊥
2Tf

]
, (5.9)

where A is a normalization factor, v‖ and v⊥ are parallel and perpendicular velocity,

respectively. For small α and negligible energy width Tf , G(ω) is given by

G(ω) ≈
3
2ω

2
b q

2

ω2 − ω2
b

+
ω4
b q

2

(ω2 − ω2
b )

2
, (5.10)

where ωb ≡ Vf/qR is the average fast ion transit frequency. The dispersion relationship

now becomes a cubic equation of ω2 with three solutions. Properties of the solutions
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are determined by the relationship between ωGAM and ωb, as well as q and the fast ion

population.
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Figure 5.1: Real frequency (a)(b) and growth rate (c)(d) versus fast ion density for multi-

fluid model with comparison to kinetic theory, for q = 4 and ωb = 0.58ωGAM. Lines/symbols:

fluid/kinetic results.

In Fig.5.1, we plot the solutions to ω with parameters q = 4 and ωb = 0.58ωGAM,

retaining finite energy width Tf = 0.25Ti, for fast particle concentration from 1% to

40%. Similar to Fu et al , multiple branches of GAMs are present. The frequency of the

upper (frequency) EGAM, as seen in Fig.5.1 (a), increases with increasing fast particle

population. This branch reduces to the thermal GAM when nf = 0. We compare our fluid

result to the numerical solution of the kinetic dispersion relationship [161, 162], showing

very good agreement. In this case, the Landau damping from the thermal particles is

negligibly small. Also, two complex conjugated branches are present in Fig.5.1 (b) and

(d) at lower frequency, both having decreasing frequency with higher fast ion fraction. We

note that the existence of these branches is due to the Doppler shift of the wave in the

static frame of the fast ions, since this is the only effect of the fast ion when Tf is small.

One of these modes is found unstable in kinetic theory, and is previously attributed to

the inverse Landau damping. However, the same growth rate is also obtained using the

fluid model. Given that no Landau damping is present in the fluid theory, this instability

cannot come from the wave-particle interaction, but must be a reactive instability. We

name this unstable branch the reactive EGAM from its nature of instability. By solving

the dispersion relationship Eq. (5.8) and (5.10), we obtain the growth rate for α � 1,

given by

γ ≈ 1

2
qω2

b (ω
2
GAM − ω2

b )
− 1

2
√
α, (5.11)

with no fast ion density threshold. Finally, we find that the fluid theory is valid for the

upper EGAM and the reactive EGAM, which are on the real axis or the upper plane,

while the other damped EGAM is located on the lower plane and is strongly modified by

Landau damping, leading to the deviation of its fluid solution from the kinetic theory.

For the regime ωb > ωGAM, the upper EGAM will start at ωb instead of the thermal

GAM frequency, as shown in Fig.5.2 (a) with parameters Tf = Ti, q = 2 and ωb =

1.76ωGAM. The kinetic theory gives a finite Landau damping rate, while in the fluid

theory, this mode is predicted to be stable. One of the lower modes starts at ωGAM when

nf = 0. Unlike Fig.5.1, the lower modes have an instability threshold of α > 0.05. In

Fig.5.2 (b) and (d), the unstable reactive EGAM and a damped EGAM occur between
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0.05 < α < 0.25 when the two modes have the same real frequency. This real frequency

bifurcates at α = 0.25, with the modes becoming stable at the same time. A parameter

scan shows that the two bifurcation points move closer to each other when ωb increases.

For ωb > 2ωGAM, the two bifurcation points merge and no unstable mode is present for

0 < α < 0.4. Again, Fig.5.2 shows a good match to the kinetic theory.
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fluid model with comparison to kinetic theory, for q = 2 and ωb = 1.76ωGAM. Lines/symbols:

fluid/kinetic results.

5.3 Discussion and application to DIII-D

The origin of the instability can be studied by calculating the wave energy of the two

lower frequency modes. In Fig.5.2 (b) when α > 0.25, the lower frequency mode is a posi-

tive energy wave (dD(ω)/dω > 0) while the other is a negative energy one (dD(ω)/dω < 0).

The strong coupling of these two modes is achieved when they possess the same real fre-

quency (0.05 < α < 0.25), where the reactive EGAM occurs. The energy can transfer from

the negative energy wave to the positive energy wave, enabling the growth of both modes

meanwhile conserving the total energy [163]. Therefore, this GAM instability shares great

similarities to the two-stream instabilities in a beam plasma system [164, 165], which can

also be captured by a fluid model.

We now study the relationship between the reactive EGAMs and the inverse Landau

damping driven EGAMs (dissipative EGAMs). The unstable EGAM frequency and growth

rate versus the fast particle energy width Tf is plotted in Fig.5.3 for the bump on tail

distribution. The parameters are identical to Fig.5.1. Figure 5.3 shows that the unstable

EGAMs are reactive for Tf/Ti < 1 where the fluid theory is valid, and dissipative for

large Tf where the kinetic effects are dominant and the fluid treatment breaks down. A

smooth transition is found in between these two regimes by solving the kinetic dispersion

relationship [161, 162]. The conditions required for finding a reactive EGAM is given by

|ω − ωb| >
1

qR

(
2Tf
m

) 1
2

. (5.12)

One can use Eq. (5.11) and |ω − ωb| ≈ γ for an estimation if ωGAM > ωb. Further study

shows that the smooth transition behavior is distribution shape independent.

Again, we have found great similarity between the EGAMs and the two-stream in-
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stabilities. It’s well known that in a beam plasma system, for a single energy beam, the

purely reactive two-stream instability occurs. On the other hand, if the bump slope is

gentle, i.e. the beam is warm, the dissipative bump-on-tail instability occurs. With a

finite but small beam energy width, the kinetic effects influence the reactive instability by

breaking the complex conjugacy of the two fluid modes [166]. A change in the topology

of the dispersion relationship is found as the beam thermal spread further increases, after

which the dissipative drive become dominant [167]. These statements are also applicable

to EGAMs.

Finally, we apply our results to the early turn-on of EGAMs in DIII-D by considering

a single energy single pitch beam distribution function, before the slowing down or pitch

angle scattering can happen. This distribution function is given by

F (E,Λ) =
m2|v‖0|nf

2πE
δ(E − E0)δ(Λ− Λ0), (5.13)

where E is the fast ion energy, Λ the pitch angle and δ(x) the Dirac delta function. We

note that in reality, the ionized beam will have a finite pitch angle spread and a first

orbit loss for counter-injection. Additional studies show that as long as the width of

the pitch angle distribution ∆Λ � Λ the pitch angle itself, our fluid theory will remain

valid. The inclusion of ∆Λ will not change the result significantly as compared to the one

assuming a single pitch angle. The form of G(ω) is identical to Eq. (5.10) except the

numerators now become a function of both E0 and Λ0. For the DIII-D beam in Nazikian

et al [45], we have E0 = 75keV and Λ0 = 0.5. We also have ωb = 0.88ωGAM obtained

from Te = 1.2Ti ≈ 1.2keV and q = 4 at the radial localized flux surface s = 0.4. Similarly

we plot the real frequency and growth rate of the reactive EGAM as a function of α in

Fig.5.4 (the other two branches are damped and not discussed here). The frequency of

the reactive EGAM stays reasonably close to the observed frequency (28kHz) for α > 3%.

Also, no density threshold is present in the fluid theory, although in reality the background

damping (such as collisional damping) may create a finite threshold. But since the growth

rate is large and is a steep function of the fast ion density when the density is low (∼
√
α),

this background damping can be overcome quickly as fast ion density increases, consistent

with the early turn-on of the mode. Furthermore, the smooth transition between reactive

and dissipative EGAMs indicates the natural conversion from the early turn-on reactive

EGAMs to the dissipative EGAMs, when the fast ions are slowed down in background

plasma. Slowing down of the fast ions due to the nonlinear phase of the reactive EGAMs

is also possible and requires further investigation.
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In summary, we have found a new unstable branch of EGAMs in the presence of beam

ions with a small width in energy distribution, known as a reactive instability similar

to the two-stream instability. This mode can have a much lower frequency than the

thermal GAMs and γ/ω up to 30% with no turn-on threshold when background damping

is not considered. Our work shows that EGAM solutions are not inherent to kinetic

approaches and one should not overlook the reactive contribution to the instabilities. A

smooth transition from reactive EGAMs to kinetic instabilities happens after the beam

ions are slowed down, similar to the transition between the two-stream and bump-on-tail

instabilities. We have also demonstrated the consistency of reactive EGAMs with the

early turn-on of EGAMs in DIII-D experiments, a scenario that cannot be explained by

the previous theories of inverse Landau damping driven EGAMs. In addition, this work

gives a good example of how the fluid theory can aid the understanding of fast particle

physics. Further discussion about the radial mode structure will be presented in future

publications.
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Chapter 6

Fluid theory of the reactive

EGAMs: global treatment

Abstract

In this paper we have developed a fluid model to study the radial mode

structure of the reactive energetic geodesic acoustic modes (reactive EGAMs),

a branch of GAM that becomes unstable in the presence of a cold fast ion beam.

We have solved the resulting dispersion relationship, a second order ODE, both

analytically in restricted cases and numerically in general. It is found that the

reactive EGAM global mode structure is formed with the inclusion of fast

ion finite drift orbit effects. In two cases with typical DIII-D parameters but

different q profiles, the global EGAM frequency is slightly higher than the local

EGAM extremum, located either on axis with a monotonic shear or at mid-

radius with a reversed shear. The mode wavelength roughly scales with L
1/2
orbit

in the core and Lorbit at the edge, though the dependency is more complicated

for the reversed shear case when Lorbit < 0.06a (Lorbit is the fast ion drift

orbit width and a the minor radius). Finally, the growth rate of the global

mode is boosted by 50% to 100% when switching from co-beam to counter-

beam, depending on the fast ion density, which may help to explain the more

frequent occurrence of EGAMs with counter-injection in experiments.

6.1 Introduction

The energetic-particle-induced geodesic acoustic modes (EGAMs) are n = 0 coherent

fluctuations in toroidal magnetic confined plasmas. They were first observed in DIII-D

experiments [45] and later in other machines [151, 152]. Their frequencies appear at half of

the conventional geodesic acoustic mode (GAM) [62] frequency of the thermal plasma and

the beam transit frequency. The EGAMs have caught the interest of the fusion community

because they demonstrate a drop of neutron rate during the mode activities that clearly

indicates a loss of fast ions [153]. This loss should be minimized in order to achieve a

better energy confinement. A suppression of turbulence transport was also observed in

accordance with excited EGAMs in a gyrokinetic simulation [66].

The first theory of EGAMs was developed by Fu [46], identifying EGAMs as energetic

particle modes (EPMs) whose frequencies and mode structures are non-perturbatively

determined by the energetic particles. They were believed to be driven unstable by the

fast ions themselves through a positive energy gradient in the distribution function (inverse

Landau damping). Follow up theory and simulation studies [155, 156, 157, 158, 159, 160,
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161, 168] confirmed these findings when the fast ion distribution function was taken to be

a slowing down distribution or a shifted-Maxwellian. It has also been found theoretically

[169] and experimentally [170] that the primary unstable EGAM branch can excite a

secondary (linearly) overstable EGAM branch, through a combination of fluid and wave-

particle nonlinearity. More recently, a new branch of EGAM has been identified in the

region where the fast ion magnetic drift frequency dominates the transit frequency [171].

Still, a puzzle remains regarding the turn-on of the mode in 1ms right after beam

switch-on, a time scale much shorter than the beam collisional slowing down time, indi-

cating an insufficient drive through the wave-particle interaction. This puzzle has been

studied by Cao et al [172] and Berk and Zhou [154] separately, giving different expla-

nations. However, it was recently found by Qu et al [173] from a fluid model that the

unstable EGAMs could exist, even in the case with a mono-energy, mono-pitch-angle fast

ion distribution function. In contrast to the former interpretation, reactive contributions,

rather than kinetic (dissipative) contributions, dominate the instabilities. This is in strong

analogy to the instabilities in a beam-plasma system, in which a cold beam leads to the re-

active two-stream instabilities, while the kinetic bump-on-tail instabilities take place when

the slope of the fast electron energy distribution function is gentle. Although based on a

local theory where the fast ions do not move off the flux surfaces (zero drift orbit width

and zero Larmor radius), the theory of reactive EGAMs has helped to solve the puzzle of

early turn-on and provided insight to the nature of EGAMs from a fluid perspective.

Nevertheless, as observed experimentally [45], EGAMs are not localized. Rather, their

radial wavelength is comparable to the minor radius of the machine. Also, the fast ions

drift away from their initial flux surfaces due to the magnetic gradient and curvature

drift, making the fast ion finite drift orbit width (FOW) effects important. The radial

structure of the kinetically driven EGAMs in DIII-D experiments were reproduced by Fu

[46] using hybrid simulations. Using the small expansion factor δ = Lorbit/Lmode, where

Lorbit is the fast ion drift orbit width and Lmode is a measurement of the radial wavelength

, Fu has found analytically that the radial wavelength is related to the orbit width of the

fast particles, as well as the fast ion density and the radial scale length of the thermal

GAM frequency. A similar expansion was adapted by Qiu et al [155] in a fully kinetic

theory, in which the radial EGAM mode structure was described by a WKB approximation

and asymptotic matching, with the continuum damping of the thermal GAM taken into

account. With the same expansion factor δ, Zhou [174] studied the global EGAMs driven

by either trapped and passing fast ions from a variational principle. All the above analysis

were intended for EGAMs driven unstable by wave-particle interaction, while the mode

structure of the reactive regime remains unexamined. The purpose of this work is to extend

the fluid theory in Qu et al to resolve the radial mode structure of reactive EGAMs. In

this work, we sometimes omit the word “reactive” for simplicity. The wording “EGAM” in

this work refers to the reactive EGAM and should not be confused with the wave-particle

driven EGAMs in previous works.

We will adapt the same small expansion parameter δ = Lorbit/Lmode, where Lorbit and

Lmode are defined by

Lorbit ∼ qρ‖, Lmode ∼
∣∣∣∣d lnEr

dr

∣∣∣∣−1

, (6.1)

with q the safety factor, ρ‖ = miv‖/eB the parallel Larmor radius, mi the ion mass,

e the unit charge, B the magnetic field strength, v‖ the parallel velocity and Er the

radial electric field. We have assumed that the fast ions and the thermal ions are of the



§6.2 Equilibrium 83

same type of singly charged ions, i.e. having the same mass mi and charge e. Still, the

difficulty of fluid closure remains, to truncate the fluid moment hierarchy at the level

of pressure. For a local theory where FOW effects are ignored, the CGL theory [15]

can give an accurate description of the fast ion response to the field in the high q limit

[75, 156]. However, when FOW effects are not negligible, corrections are needed for the

CGL double-adiabatic law (see for example [119]). Ignoring finite Larmor radius (FLR)

effects and assuming gyro-orbit symmetry, the pressure tensor can still be written in a

diagonal form P = p⊥(I− bb) + p‖bb, with p⊥ the perpendicular pressure, p‖ the parallel

pressure, I the unit dyad, and b the unit vector in the direction of the magnetic field.

Due to the smallness of the energy in the drift velocities compared to the energy of the

gyro motion (O(ε2δ2)), the value of p⊥ can still be approximated by the moment of µB,

where the magnetic moment µ is given by µ = mv2
⊥/2B and is a conserved quantity in the

absence of FLR effects. The difficulty of fluid closure is avoided in our current work by

limiting the fast ions to have a mono-energy, mono-pitch-angle distribution function, with

which the effective parallel pressure is zero and the perpendicular pressure perturbation

is linked to the density perturbation due to the conservation of µ.

In this work, there are three small unitless parameters: the fast particle orbit width

over mode width δ, the inverse aspect ratio ε and amplitude of perturbation. All quantities

will be equilibrium quantities unless denoted with tilde. Additionally, we consider three

species: fast ions, thermal ions and thermal electrons. All quantities will refer to the fast

species unless denoted with ”e” or ”i”. Our approach to the problem and structure of

work is as follows. Section 6.2 describes the simplified geometry of the problem: a large

aspect ratio, low beta tokamak with concentric flux surfaces. A consistent treatment of the

equilibrium fast ion density profile with FOW effects included is also given. In Section 6.3,

we derive the linear fluid theory of reactive EGAMs. We will start with the local theory,

reproducing the dispersion relationship in Qu et al . In new work, we keep higher order

terms in δ, giving the global dispersion relationship. This dispersion relationship is studied

in Section 6.4, with qualitative analytic discussions and numerical solutions. Dependency

of the results on different q profiles is examined. A numerical scan on the relationship

between Lmode and the drift orbit width is also performed. In addition, we have found the

distinction in mode frequency and growth rate between the counter/co-injection due to the

fact that drift orbits of counter(co)-passing ions shift inward (outward) with respect to the

flux surfaces, an element omitted in our previous work. The dependency of growth rate

with different injection directions agrees with experimental observations. Finally, Section

6.5 draws the conclusion, and proposes other validation and verification studies.

6.2 Equilibrium

6.2.1 Geometry

In order to obtain a self-consistent tokamak equilibrium with fast ions, we need to solve

the anisotropy and flow modified Grad-Shafranov equation [92, 83, 101] for the equilibrium

profiles in radial direction to obtain the poloidal flux function Ψ(R,Z). However in this

work, we will ignore the influence of the plasma current and pressure on geometry, except

for the existence of a poloidal field. We start with a tokamak plasma with large aspect

ratio, circular cross section and low β. Large asepct ratio means ε ≡ a/R0 � 1, in which

R0 is the major radius on axis and a the minor radius. We can now use a simplified

set of coordinate (r, θ, ϕ), labeling the radial coordinate, the poloidal and toroidal angle,
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respectively. The outward shift of the flux surfaces, namely the Shafranov shift, is ignored

in our treatment. The local major radius and the magnetic field strength are approximately

given by R ≈ R0[1 + (r/R0) cos θ] and B ≈ B0[1− (r/R0) cos θ]. Symmetry in equilibrium

is assumed for ϕ direction in a tokamak plasma. For convenience, we define the bi-normal

unit vector π̂ ≡ b̂ × êr. So we now have another set of orthogonal unit vector triad

(êr, π̂, b̂). We also have the identity

∇ · π̂ ≈ −π̂ · ∇ lnB ≈ (b̂ · ∇π̂) · b̂ = −κg ≈ − sin θ/R0, (6.2)

which are all considered as geodesic curvature.

6.2.2 Fast ion density profile with finite orbit width

The fast particle unperturbed guiding centre drift orbits in a tokamak plasma have

three constants of motion: the magnetic moment µ, the energy E, and the toroidal

canonical momentum Pϕ = −eΨ + mv‖R. That is to say, the equilibrium fast ion

distribution function can be written as a function of these three quantities only, i.e.

F0 = F0(E,µ, Pϕ, σ), where σ denotes the type of particle orbit (co/counter passing,

trapped). In a toroidal geometry, B is not a constant on flux surfaces. The conservation

of µ will lead to a different perpendicular energy µB at different poloidal angle, and thus

inhomogeneous fast ion density and pressure on a flux surface, if the distribution of the

fast ions is not an unshifted Maxwellian. Moreover, the deviation of constant Pϕ surfaces

from constant Ψ surfaces will contribute to this inhomogeneity, since on a constant Ψ

surface, the density at different poloidal angle corresponds to the distribution function at

different Pϕ. The contributions from both effects should be taken into account.

The fast ion distribution function is given by

Ff =
m

1/2
i

√
E − µB0√
2πE

nf (Pϕ)δ(E − E0)δ(Λ− Λ0), (6.3)

where Λ ≡ µB0/E is the pitch angle and δ(x) the Dirac delta function. All the fast

ions now have the same energy E0 and pitch angle Λ0, consistent with the early beam

injection scenario, while the fast ion density at different radial location is described by nf .

Equation (6.3) implies that the parallel pressure p‖f = 0 and the perpendicular pressure

p⊥f = nfE0Λ0 +O(ε).

We now write the fast ion fluid’s equilibrium velocity as

Vf = Vf‖b̂+ Vf,mag + Vf,dia, (6.4)

with Vf‖, Vf,mag and Vf,dia accounting for the collective transit motion of the fast ions,

the magnetic gradient/curvature drift, and the diamagnetic drift, respectively.

Using the ordering in δ, we solve the continuity equation and the momentum equation

order by order. We can write the fast ion density nf into nf = nf,δ0 + nf,δ + · · · with

increasing order in δ. Taking the zeroth order in δ, the equilibrium continuity equation

for the fast ions is written as

∇ · (nf,δ0Vf‖b̂) = 0. (6.5)

Equation (6.5) leads to the well known condition of poloidal flow that nf,δ0Vf/B being

a constant on a flux surface. Similarly, we have the lowest order fast ion momentum
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equation given by

∇ · [p⊥f,δ0 I + (mfnf,δ0V 2
f‖ − p⊥f,δ0)b̂b̂] = enf,δ0 [Vf,mag + Vf,dia]×B, (6.6)

where κ = b̂ ·∇b̂ is the field line curvature. Combining Eq. (6.5) and the parallel direction

of Eq. (6.6), we will reach that

B
∂nf,δ0

∂B

∣∣∣∣
r

= nf,δ0

(
1 +

1

2

Λ0

1− Λ0

)
= nf,δ0(1 + cf ), (6.7)

showing the change of density on a flux surface due to µ being an orbit invariant and the

distribution function being non-Maxwellian. Note that as Λ0 approaches 1, the fast ions

approach the limit of trapped particles, in which the fast ion density becomes discontinuous

on a flux surface since the ions can’t reach the high field side in the magnetic mirror. In

such cases, Eq. (6.7) diverges and becomes invalid for these trapped particles. In this

work, we will focus on the passing fast ions in reactive EGAMs and will not pursue an

improved description for the trapped particles. The perpendicular direction of Eq. (6.6)

is used to determine Vf,d, giving that

Vf,mag = −
mV 2

f‖ + p⊥f,δ0/nf,δ0

eB0R0

(
−R0b̂× κ

)
≈ V̄f,mag(êr sin θ + eθ cos θ) +O(ε2δ), (6.8)

where κ = b̂ · ∇b̂ is the field line curvature. We have used the vacuum field assumption

∇ ×B = 0. Taking a flux surface average, the numerator of V̄f,mag is approximated by

(2− Λ0)E0. Therefore, we reach V̄f,mag/Vf‖ ∼ O(εδ).

It is more convenient to write nf,δl = n̄f,δl(r)(cos θ)l + O(εδl) and thus we have the

continuity equation ∇ · (nfVf ) = 0 recast into the hierarchy given by

n̄f,δl+1 =
1

l + 1

qR0V̄f,mag

Vf‖

(
d

dr
− l

r

)
n̄f,δl +O(εδl+1), (6.9)

showing that n̄f,δl+1/n̄f,δl ∼ O(δ). Finally, adding the contribution for all the orders of

δ, we will have the equilibrium density profile with the FOW effects. It will be more

verbose to find the O(εδl) terms which are later used in our global theory. The details

of these terms are given in Appendix 6.6. We note that the inclusion of the diamagnetic

current will not contribute to the continuity equation and thereby will not change the

fast ion density profile, since the divergence of curl is zero naturally given the form of

Jdia = −∇× p⊥b̂/B.

The corresponding solution of the equilibrium profile is justified by comparing to the

fast ion guiding centre drift orbits, as shown in Fig.6.1, indicating a very good match

between the constant density surface and the orbits as expected. The difference in the

sign of Vf‖ (Vf‖ > 0 for co-passing and Vf‖ < 0 for counter-passing) leads to a different sign

in n̄f,δ , the first Fourier harmonic of the fast ion density on a flux surface, and therefore a

outward/inward shift of the co/counter-passing density contour. As we will show later in

the paper, the different sign in n̄f,δ results in a different growth rate for different direction

of injection. The profiles we have used are n̄f,0 = n0 exp(−r2/a2) as the specified density

profile and q = 3 being a constant of radius, with R0 = 1.7m, ε = 0.3, B = 2T, E0 = 75keV

and Λ0 = 0.5, i.e. typical DIII-D beam parameters [45]. The density hierarchy is truncated

at O(δ3) level. Note that in Fig.6.1 we have ignored the change of density in θ direction
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due to µ being a constant of motion. We have also ignored the effect of particle loss at

the boundary.

Figure 6.1: The equilibrium fast ion density nf contour on the plasma cross section, normalized

to the on axis value, for co-passing (a) and counter-passing (b) flow direction. The fast ion guiding

centre drift orbits for E = 75keV and Λ = 0.5 are overplotted in red lines, with particles released

at r/a = 0.1, 0.3 and 0.5 (inbound/outbound for co/counter-passing ions), from the most inner to

the most outer orbit.

6.3 Linear perturbation treatment

The GAMs are electrostatic modes with toroidal mode number n = 0. We retain only

the poloidal mode number m = 0 part of the perturbed electrostatic potential and two

sidebands with m = ±1, written as

Φ̃ = Φ̃m=0(r)e−iωt + Φ̃m=1(r)eiθ−iωt + Φ̃m=−1(r)e−iθ−iωt, (6.10)

in which ω = ωr+iγ is the complex frequency and the tilde labels the perturbed quantities.

The radial derivative of Φ̃ give rise to the E ×B drift velocity as

ṼE ≈
Ẽrêr ×B

B2
≈ ∂rΦ̃

m=0

B
e−iωtπ̂ = ṼE(r)e−iωt

B0

B
π̂, (6.11)

where we have used Φ̃m=0/Φ̃m=±1 � 1, an assumption that we will justify later. The

E ×B drift velocity is considered as the O(1) velocity on which our argument of order is

based. The dynamics of the system is determined by the linearized momentum equation

of each species “s”, given by

msns

(
∂Ṽs
∂t

+
ñs
ns
Vs · ∇Vs + Vs · ∇Ṽs + Ṽs · ∇Vs

)
= nse(−∇Φ̃ + Ṽs ×B)−∇ · [p̃⊥sI + (p̃‖s − p̃⊥s)b̂b̂]. (6.12)

We have used the electrostatic approximation, setting the perturbed magnetic field to be

zero. We will also need the continuity equation of each species, given by

∂ñs
∂t

= −∇ · (nsṼs + ñsVs). (6.13)
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6.3.1 Bulk plasma

The perturbed fluid velocity of bulk ions consists of both the perpendicular and parallel

components, written as

Ṽi = ṼE(r)
B0

B
e−iωtπ̂ + [Ṽ m=1

i‖ (r)eiθ−iωt + Ṽ m=−1
i‖ (r)e−iθ−iωt]b̂+ Ṽi,δ, (6.14)

in which Ṽ m=±1
i‖ is the O(1) parallel velocity and Ṽi,δ the O(δ) velocity accounting for the

magnetic, polarization and diamagnetic drift. The response of ion pressures, p̃‖i and p̃⊥i,

are described by the double-adiabatic (CGL) fluid closure, given by

dp̃‖i
dt

= −pi∇ · Ṽi − 2pib̂ · (b̂ · ∇Ṽi), (6.15)

dp̃⊥i
dt

= −2pi∇ · Ṽi + pib̂ · (b̂ · ∇Ṽi). (6.16)

For bulk ions, it is sufficient to keep only ṼE , the E ×B drift velocity in the perturbed

perpendicular velocity and ignore the higher order term Ṽi,δ, i.e. bulk ion FOW and FLR

effects are ignored. Using Eq. (6.2) and extending p̃‖i and p̃⊥i similarly into poloidal

Fourier harmonics, we obtain to the zeroth order of ε, p̃‖
m=0
i

= p̃⊥
m=0
s = 0 and

p̃‖
m=±1
i

= ± 2pi
R0ω

ṼE ±
k

ω
3piṼ

m=±1
i‖ , (6.17)

p̃⊥
m=±1
i = ± 3pi

2R0ω
ṼE ±

k

ω
piṼ

m=±1
i‖ , (6.18)

in which k = 1/qR0.

The ion density perturbation is given by the continuity equation Eq. (6.13). Again

using Eq. (6.2) and retaining the zeroth order terms in ε, the m = ±1 harmonics of the

ion density perturbation are given by

ñm=±1
i = ± ni

R0ω
ṼE ±

k

ω
niṼ

m=±1
i‖ , (6.19)

and ñm=0
i = 0.

Since the electron transit frequency is much higher than the frequency of the mode, the

response of electron is assumed to be isothermal (alias adiabatic in kinetic theory), which

means p̃e = ñeTe, with p̃e and ñe the perturbed electron pressure and density, respectively.

Ignoring electron inertia, the momentum equation of electron gives

0 = nee∇Φ̃− neeṼE ×B − Te∇ñe, (6.20)

where Ṽe is the perturbed electron velocity. The parallel direction of Eq. (6.20) gives

ñm=±1
e = ene

Φ̃m=±1

Te
. (6.21)

The quasi-neutrality condition is given by

ñm=±1
e = ñm=±1

i + ñm=±1
f (6.22)

with the perturbed electron pressure obtained by p̃e = ñeTe. Given the smallness of
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the fast ion density, the second term on the right hand side of Eq. (6.22) can often

be ignored. Equating Eq. (6.19) and (6.21), one can obtain the following relationship:

Φ̃m=±1/Φ̃m=0 ∼ O(εδ
√
Te/E0) and is thereby ignored in the E×B drift as stated earlier.

Finally, using Eq. (6.21) and (6.22) to eliminate Ẽ‖, the parallel component of Eq.

(6.12) in zeroth order of ε becomes

miniωṼ
m=±1
i = ±k

(
p̃‖
m=±1
i

+ ñm=±1
i Te

)
. (6.23)

The perpendicular components of Eq. (6.12) can be rewritten into a sum of currents as

J̃i⊥,δ =
1

B
(p̃⊥i + p̃‖i + 2Teñi)b̂× κ

−∇×
(
p̃⊥i + Teñi

B

)
− iωmini

B
b̂× ṼE , (6.24)

with the three terms on the right hand side accounting for the magnetic drift current,

the diamagnetic current and the polarization current, respectively. A flux average quasi-

neutrality condition,

〈∇ · J̃〉 = 0, (6.25)

can be imposed to obtain the dispersion relationship, in which J̃ is the total current. The

flux average simply cancels out the effect of parallel current and in the absence of the fast

ions, Eq. (6.25) can simply be replaced by 〈∇ · J̃i⊥,δ〉 = 0, with 〈∇ · J̃i⊥,δ〉 given by

〈∇ · J̃i⊥,δ〉 =
1

r

∂

∂r
r

[
iω
mini
B0

ṼE −
i

2B0R0
(p̃m=1
bulk − p̃m=−1

bulk )

]
, (6.26)

where p̃m=±1
bulk = (p̃⊥i + p̃‖i + 2Teñi)

m=±1.

In the absence of fast ions, equating Eq. (6.26) to zero and using Eq. (6.18), (6.17),

(6.19) and (6.23) yield a set of three equations with three unknowns ṼE , Ṽ m=1
i‖ and Ṽ m=−1

i‖ ,

defining an eigenvalue problem of ω, i.e. the dispersion relationship. The dispersion re-

lationship can be solved on each flux surface independently, giving three solutions corre-

sponding to the thermal GAM, the ion sound wave and the low frequency zonal flow with

the frequency from the highest to the lowest. The high-q limit of the GAM frequency is

given by

ω2
GAM(r) =

2Ti
miR2

0

(
7

4
+ τe

)[
1 +O(q−2)

]
, (6.27)

in which τe ≡ Te/Ti is the ratio of electron and ion temperature. Equation (6.27) recovers

the gyrokinetic adiabatic index γe = 1 and γi = 7/4 by Sugama and Watanabe [73], with

the coupling to ion sound wave given by the O(q−2) term.

6.3.2 Fast ions local theory

We need to calculate the flux average perturbed radial current J̃f for the fast ions and

then use Eq. (6.25) to get the dispersion relationship. This calculation is carried on to the

order of O(δ) for a local theory and O(δ3) for a global theory, with the former discussed

in this section.

We here define ωb(r) = 〈Vf‖〉/q(r)R0 as the fast ion transit frequency. Similarly to the
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bulk ions, the O(1) continuity equation can be simplified to

ñm=±1
f,δ0 = ± 1

2R0(ω ∓ ωb)

[
n̄f,δ0(1− cf ) + n̄f,δ

R0

r

]
ṼE

± k

ω ∓ ωb
n̄f,δ0 Ṽ m=±1

f‖,δ0 . (6.28)

Note that we have retained the O(δ/ε) term proportional to nf,δ, which can be an O(1)

contribution given the smallness of ε. Given the form of the distribution function Eq.

(6.3), the fluid closure is simplified to

p̃⊥f ≈ Λ0E0ñf , p̃‖f = 0. (6.29)

The parallel direction of the momentum equation Eq. (6.12) yields the O(1) equations

for perturbed parallel velocity, given by

Ṽ m=±1
f‖,δ0 = ±

1 + cf
2(ω ∓ ωb)

ωbqṼE , (6.30)

in which we have ignored the contribution from the responding electrons balancing the

parallel electric field, due to the argument that Te � E0 so the fast ion response will

dominate over the electrons. The magnetic drift current, derived from the perpendicular

direction of Eq. (6.12), has the form

J̃f⊥mag,δ =
1

B

[
p̃⊥f,δ0 +miñf,δV

2
f‖ +2minf,δ0Vf‖Ṽf‖,δ

]
b̂× κ, (6.31)

while the polarization current is simply given by

J̃f⊥p,δ = −iω
minf,δ0

B
b̂× ṼE . (6.32)

We will ignore the diamagnetic current since it does not contribute to the divergence.

Adding the current contributions from the bulk ions and fast ions and taking the quasi-

neutrality condition Eq. (6.25), we reach the dispersion relationship, written as

D(ω, r) = 1− [1− α(r)]
ω2

GAM(r)

ω2
− α(r)G(ω, r), (6.33)

in which α = n̄f,δ0/(ni + n̄f,δ0) is the fast ion density proportion and G(ω, r) is the contri-

bution from the fast ions. We have taken the high-q limit and eliminate the contribution

from the bulk ion parallel velocity. With the distribution function described by Eq. (6.3),

the form of G(ω, r) is given by

G(ω, r) =
1 + cf

2

[
(3− cf ) +

R0

r

n̄f,δ
n̄f,δ0

]
×

ω2
b q

2

ω2 − ω2
b

+ (1 + cf )2 ω4
b q

2

(ω2 − ω2
b )

2
, (6.34)

where ωb and q are functions of r. We note that cf = Λ0/(2 − 2Λ0) from Eq. (6.7). In

the limit Λ0 → 0, i.e. completely tangential beam, cf = 0 and Eq. (6.34) reduces to

the form derived from a bump-on-tail fast ion distribution with ignorable temperature in

Qu et al [173] and was studied there in detail. While not taken into account in Qu et
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al , the additional term proportional to n̄f,δ originates from the density change on a flux

surface due to FOW effects, and is responsible for the distinction between the co-passing

and counter-passing injections. We will not study these effects separately here in a local

theory, but will study it along with the global theory later in this work. Note that similar

interpretation of this additional term can also be found in the work by Berk and Zhou

[154].

6.3.3 Fast ion global theory

In the absence of bulk ion and fast ion FLR/FOW effects, the perturbations on differ-

ent flux surfaces cannot communicate to each other and will oscillate at their own local

GAM/EGAM frequency. Any global perturbation will disperse quickly into a radially

highly oscillating structure and became highly damped due to phase mixing [175]. When

fast ion FOW effects are taken into account, the drift orbits of the fast ions act as bridges

between flux surfaces and allow the radial propagation of the mode. To take into account

the fast ion FOW effects, we carry on the calculation of the fast ion radial current to

O(δ3). We note that the fast ion polarization drift current and diamagnetic current are

ignored for higher order calculation. The contribution from the fast ion polarization drift

current is a factor of α smaller than the bulk ion one, while the latter is comparable to the

bulk plasma and thus the fast ion magnetic drift current, if the fast ion beta βf ∼ βbulk
the bulk plasma beta. The fast ion diamagnetic current, whose divergence vanishes and

will not contribute to the continuity equation and ∇ · J , is also ignored.

The calculation is straight forward, by solving order by order the continuity equation

and the momentum equation along with the closure condition Eq. (6.29). The corre-

sponding equilibrium/perturbed variables and their ordering are listed in Table 6.1. We

substitute Eq. (6.31) into the O(δ) continuity equation Eq. (6.13) to obtain ñf,δ, while

Ṽf‖,δ is calculated from the parallel direction of the momentum equation Eq. (6.12). The

perpendicular direction of Eq. (6.12), is used in turn to get Ṽf⊥mag,δ2 of an order higher.

This procedure is repeated to obtain Ṽf⊥mag,δ3 which will be used in Eq. (6.25). All the

steps above have retained only the zeroth order terms in ε. The detail of all the algebra

involved is provided in Appendix 6.7.

Table 6.1: The equilibrium/perturbed fast ion quantities and their order in δ

nf ñf Vf Ṽf
O(1) nf,δ0 ñf,δ0 Vf‖b̂ ṼE + Ṽf‖,δ0 b̂

O(δ) nf,δ ñf,δ - Ṽf‖,δb̂

O(δ2) nf,δ2 ñf,δ2 - Ṽf‖,δ2 b̂

O(δ3) nf,δ3 ñf,δ3 - -

O(εδ) - - Vf,mag Ṽf⊥mag,δ

O(εδ2) - - - Ṽf⊥mag,δ2

O(εδ3) - - - Ṽf⊥mag,δ3

The dispersion relationship, after taken into account the O(δ3) contributions, is now

simplified to

d

dr
ρ2
‖
1

r

(
F1

d

dr
B1 + F2

d

dr
B2

)
rn̄f,δ0 ṼE + ρ2

‖
1

r2

(
F3

d

dr
B3 + F4

d

dr
B4

)
r2
n̄′f,δ0

ωb
ṼE

+ρ2
‖F5ṼE + ntotalD(ω, r)ṼE = 0, (6.35)
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in which the brackets in the first and second terms are considered as differential operators

and apply to the terms followed. The coefficients are given by

F1(ω, r) =
1

8

ω4
b q

2

ω2

(
4

ω2 − 4ω2
b

− 1

ω2 − ω2
b

)
, (6.36)

F2(ω, r) =
1

4

ω6
b q

2

ω2

[
16

(ω2 − 4ω2
b )

2
− 1

(ω2 − ω2
b )

2

]
, (6.37)

and

B1(r) =

(
7− cf +

nf,δ
nf,δ0

R0

r

)
(1 + cf )3, (6.38)

B2 = (1 + cf )4, (6.39)

with all other terms given in Appendix 6.8.

6.4 Solving the dispersion relationship

The global dispersion relationship Eq. (6.35) is solved numerically using a shooting

method. The boundary condition we’ve used is ṼE(0) = 0 and the outgoing wave condition

at the other end, given the experimentally observed outward propagating behaviour [176].

This outgoing boundary condition is achieved by introducing a perfectly matched layer

[177] outside r = a which strongly absorbs the outgoing wave and allows no reflection. In

the perfectly matched layer, we preform the substitution

d

dr
→ 1

1 + iσ0(r/a− 1)2

d

dr
, (6.40)

and enforce zero Dirichlet boundary condition ṼE(b) = 0 at b > a. The value of σ0

and b vary from case to case. They are carefully chosen to be large enough to reach the

convergence of the frequency, whilst finite to prevent ill-behaved solutions. Typical values

are σ0 = 40 and b = 1.2a. Based on this numerical scheme, we will perform a parameter

scan on various profiles.

We will first explore the dependency of the global modes on the q profile. Figure

6.2 (a) shows the two quadratic q profiles we use, having monotonic and reversed shear

respectively. In both cases qmin = 3, but the minimum is reached on axis for the monotonic

case and at r/a = 0.4 for the reversed shear case. The bulk plasma temperature profile

used is Te = Ti = 1−r2/a2 in the unit of keV, while the bulk density is taken to be constant.

The zeroth order fast ion density profile is given by α(r) = 0.1 exp(−r2/a2) with the on

axis ratio 10%. These profiles are plotted in Fig.6.2 (b). Note that the relative high

density of the fast ions is a requirement for our small orbit width expansion which will

be explained later. For similar reason, we have chosen B0 = 3T, instead of B0 = 2T for

DIII-D, reducing the orbit width from Lorbit/a = 0.12 to 0.08. Other parameters we’ve

used are R0 = 1.7m, ε = 0.3, E0 = 75keV,Λ0 = 0.5 and deuterium, typical DIII-D beam

parameters. The direction of the fast ions is counter-passing.
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Figure 6.2: (a) The q profile used in the monotonic (red solid line) and reversed shear (blue

dashed line) case. (b) The Te and Ti profile and the α profile.

6.4.1 Monotonic shear case

The radial mode structure, ṼE as a function of minor radius, is plotted in Fig.6.3 (a) for

the most unstable solution in the monotonic shear case. The frequency and growth rate are

32.7kHz and 57%. The absolute amplitude is maximized at around r/a = 0.3 and decays

outward, showing a outgoing wave pattern (as a result of our boundary conditions). The

direction of propagation can be understood by assuming ṼE(r) ∼ exp(ikrr), and therefore

the peak of <(ṼE) ∼ cos krr will be ahead of =(ṼE) ∼ cos krr by a quarter of wavelength

if kr > 0, in agreement with Fig.6.2(a). By inspection of Fig.6.3 (a), Lmode is a function

of radial position. Instead of using the original definition in Eq. (6.1), we measure Lmode

by the full width at half maximum separately for the real and imaginary part and then

takes an average. In the core region, Lmode is measure between the first two nodes, giving

Lwave, core, while Lwave,edge is measured between the last two nodes. In addition, Lorbit

is measured at r = 0 and 1 for the core and the edge, respectively. For Fig.6.3 (a),

Lmode, core/a = 0.25 with δ = 0.32. Our small parameter expansion is thus barely valid in

the core. However, in the edge region δ ∼ 1, and our assumption is not valid. We would

expect the inclusion of higher order corrections in δ to reduce the mode amplitude at the

edge, since when the orbit width is comparable to the radial wavelength, the large drift

orbit tends to “average out” the field, leading to a lower fast ion response.

The thermal GAM continuum, the frequency of the EGAM local solution, the transit

frequency and the global EGAM frequency are plotted in Fig.6.3 (b). The thermal GAM

continuum frequency peaks on axis and monotonically decreases to zero at the edge fol-

lowing the temperature profile. The frequency of the local EGAM is also monotonic with

an on-axis extremum, mainly due to the monotonic q profile and thus a monotonic fast

ion transit frequency. The frequency of the global mode is 0.1kHz above the extremum,

with an growth rate lower than the local solution (64%) by 7%.

To understand the property of the global solution, we expand the local dispersion

relationship around its on-axis extremum. If we explore the case Lmode � a, the radial

change of the equilibrium profiles becomes unimportant compared to the mode structure,

and thus, our global dispersion relationship Eq. (6.35) can be simplified to

d

dr

1

r

d

dr
rṼE(r) + (pr2 + h∆ω)ṼE(r) = 0, (6.41)
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Figure 6.3: (a) The radial mode structure of the monotonic shear case. (b) The thermal GAM

continuum, the transit frequency as a function of radius, the local EGAM frequency and the global

EGAM frequency for the monotonic shear case.

where ∆ω = ω − ωEGAM(r = 0), with p and h given by

p =
∂2D

∂r2
/[αρ2

‖(F1B1 + F2B2)], (6.42)

h =
∂D

∂ω
/[αρ2

‖(F1B1 + F2B2)], (6.43)

taken the value on axis and ω = ωEGAM(r = 0). The solution of Eq. (6.41), satisfying the

zero Dirichlet boundary condition on axis, is given by

ṼE(r) =
1

r
e

1
2
i
√
pr2
L−1

1
4
ih∆ω/

√
p
(i
√
pr2), (6.44)

in which Lαn(z) is the generalized Laguerre function, a solution to the Laguerre’s equation

zy′′(z) + (α+ 1− z)y′(z) + ny(z) = 0. (6.45)

The asymptotic behaviour of solution Eq. (6.44) at +∞ is written as

ṼE(r → +∞)→ C1(p, h∆ω)

Γ
(
− ih∆ω

4
√
p

) r− ih∆ω
2
√
p
−1
e−

1
2
i
√
pr2

+
C2(p, h∆ω)

Γ
(
ih∆ω
4
√
p

) r
ip∆ω√

h
−1
e

1
2
i
√
pr2
, (6.46)

in which Γ(z) is the Gamma function, and C1 and C2 are non-zero unless p = 0. If

<(
√
p) > 0, the first term in Eq. (6.46) represents an inward propagating component

and the second term is an outward propagating one. To satisfy our outgoing boundary

condition, we need the Gamma function in the denominator of the first term to approach

infinity, i.e. 1/Γ(z) → 0. Singularities happens for Γ(z) when z is a negative integer,

leading to the eigenvalue condition

∆ω =

{
−4iN

√
p/h if <(

√
p) > 0,

4iN
√
p/h if <(

√
p) < 0,

N = 1, 2, 3, · · · . (6.47)

For the case demonstrated in Fig.6.3,
√
p = 34.3 + 7.99i, h = (7.3 + 1.1)× 10−3, and the

calculated frequency and growth rate from Eq. (6.47) with N = 1 are given by 33.7kHz and

53.9%. The deviation of the analytic solution from the numerical solution is a consequence
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of Lmode � a being unsatisfied. We note that when B0 is increased to 9T and Lmode is

reduced to 0.15a, we have got a much better match (frequency 33.4kHz and growth rate

54.1%).

Inspection of Eq. (6.44) shows Lmode around the axis is approximately given by

Lmode,core ∼ p−1/4 ∼ α1/4q1/2L
1/2
orbitL

1/2
EGAM. (6.48)

Away from the core region, a WKB approximation can be applied since the length scale

of the equilibrium quantities is comparable to the minor radius, while the mode width is

comparable to Lorbit and Lorbit � a. Given ωGAM vanishes at the edge, D(ω, r) ∼ 1, and

therefore

Lmode,edge ∼ α1/2qLorbit, (6.49)

matching our observations in Fig.6.3. Equation (6.49) also indicates that δ � 1 is not

satisfied at the plasma edge unless an unrealistic α is assumed.

A numerical parameter scan is performed to study the relationship between the orbit

width and the mode width. The drift orbit width is changed by adjusting the field strength

B0, with the advantage of conserving the EGAM local frequency. As the field strength

is increased, the radial model structure gradually changes from Fig.6.3 (a) to Fig.6.4 (a)

with a shorter wavelength. Similar to the previous case, we measure the radial mode

width by the full width of the real and imaginary parts at half maximum and takes an

average, for B0 from 3T to 9T. The “measurement” is taken between r = 0 and the first

zero in the core for Lmode,core, and between the last and second last zeros at the edge for

Lmode,edge. The corresponding relationship between the orbit width and the mode width

is shown in Fig.6.4 (b). The trend line of Lmode in Fig.6.4 (b) matches Eq. (6.48) and

(6.49) respectively in the core and at the edge.
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Figure 6.4: (a) The radial mode structure of the monotonic shear case with increased field

strength B0 = 9T. (b) Scanning B0 from 3T to 9T, the radial mode width as a function of drift

orbit width near the axis (black squares) and at the edge (blue circles) for the monotonic shear

case, with a square root and a linear trend line, respectively.

6.4.2 Reversed shear case

We have repeated our mode structure calculation for the reversed shear case, with

ṼE(r) and global/local EGAM frequency given in Fig.6.5. Inspection of Fig.6.5 (b) shows

that the thermal GAM continuum is almost identical to the monotonic shear case, since
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the same temperature profile is used and the O(q−2) correction to the GAM frequency is

eligible for q ≥ 3. However, the local EGAM continuum in the two cases are qualitatively

different. In the reversed shear case, an extremum is presented at r/a = 0.37 near the

q = qmin surface. This off-axis extremum is formed due to the extremum of ωb = v‖/qR0

the fast ion transit frequency at the same radius, and ultimately due to the shear reversal.

The frequency of the most unstable global mode is 1kHz above this maximum at 33.3kHz,

with a growth rate of 61.5%. Similar to the monotonic shear case, the mode structure is

radially propagating with δ = 0.29 in core, but the mode amplitude is higher around the

core region compared to the edge.
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Figure 6.5: (a) The radial mode structure of the reversed shear case. (b) The thermal GAM

continuum, the transit frequency as a function of radius, the local EGAM frequency and the global

EGAM frequency for the reversed shear case.

Again we can simplify Eq. (6.35) around the maximum of the EGAM local continuum,

giving that
d2

dr2
ṼE(r) + [p(r − rex)2 + h∆ω]ṼE(r) = 0, (6.50)

with the definition of p and h the same as Eq. (6.42) and (6.43), but evaluated at r = rex

and ω = ωex, labeling the radius and the complex frequency at the extremum, respectively.

The solution to Eq. (6.50) is given by

ṼE(r) =

{
Dν [
√

2(−p)1/4(r − rex)], <(
√
p) < 0,

D−1−ν [−
√

2i(−p)1/4(r − rex)], <(
√
p) > 0,

, (6.51)

in which the parabolic cylinder function Dν(z) is the solution to the Weber’s equation

y′′(z) +

(
ν +

1

2
− 1

4
z2

)
y(z) = 0, (6.52)

and

ν = −1

2
− ih∆ω

2
√
p
. (6.53)

Asymptotically, the solution in Eq. (6.51) satisfies

ṼE(r → +∞)→

{
rνe−

1
2
i
√
pr2
, <(

√
p) < 0,

r−ν−1e
1
2
i
√
pr2
, <(

√
p) > 0,

, (6.54)



96 Fluid theory of the reactive EGAMs: global treatment

with the outgoing boundary condition satisfied. The parameter ν, and thereby the mode

frequency, will be determine by the other boundary condition ṼE(0) = 0.

The approximate solution Eq. (6.51) is no longer valid around the magnetic axis, as

the 1/r factor in the second order derivative term in Eq. (6.35) becomes important. Near

the axis, the solution is given by

ṼE(r) ≈ J1(
√
βr), β =

D(ωex, r = 0)

αρ2
‖(F1B1 + F2B2)

, (6.55)

where Jn(z) is the Bessel function of the first kind and β is evaluated on axis and at

ω = ωex so it does not depend on the choice of ∆ω. Theoretically, we can connect the core

solution Eq. (6.55) and the outer region solution Eq. (6.51) at r = rc. The connection

criterion

ṼE |r=r
+
c

r=r−c
=
dṼE
dr

∣∣∣∣∣
r=r+

c

r=r−c

= 0, (6.56)

should define the eigenvalue problem of ν and therefore ∆ω. However, in practice, we’ve

found that although the eigenfunction is insensitive to the choice of rc, ∆ω depends quite

heavily on rc. Therefore, we will not pursue a quantitative match between the full numer-

ical solution and the analytic one in the reversed shear case.

One would expect that the scaling law Eq. (6.48) still holds for the reversed shear

case in the core region given the form of the solution in Eq. (6.51). However, as we will

show later, this scaling law fails for B0 > 4T. In Fig.6.6 (a), we have plotted the radial

mode structure for a increased field strength B0 = 5T. The frequency of the mode is now

32.1kHz, 0.6kHz below the maximum of the continuuum. The mode structure becomes

quite core-localized, with a low-amplitude propagating tail near the edge. An analogy can

be made between Eq. (6.50) and the 1D Schrödinger equation in the quantum mechanics

with

E − V (r) = h∆ω + p(r − rex)2, (6.57)

in which E is the energy and V (r) is the potential. With <[h] > 0 in our case, a global

mode frequency lower than the EGAM extremum frequency means E < V (r) near the

extremum, a classically forbidden region. Near the magnetic axis and at the edge, we

have E > V (r) the classically allowed region. A mode excited in the core is allowed

to propagate across the forbidden region through quantum tunneling and into the outer

region. Therefore, we would expect a significantly reduced mode amplitude at the edge

compared to the core since the lower the energy E is, the less wave will “leak” into the

outer region. Due to the observation that as B0 increases, the global frequency becomes

lower than the global continuum, the solution in Eq. (6.51), assuming an extremum mode,

is no longer appropriate. As a result, the mode width will not follow Eq. (6.48) for large

B0, in the region where ω < ωex. This is confirmed in Fig.6.6 (b), in which we have

plotted a scan of the mode width over the orbit width by increasing the field strength. For

orbit width less than 0.06a, the curve is found to follow the trend line ∝ Lorbit instead of a

square root, which can be derived from the on axis solution Eq. (6.55). For Lorbit > 0.06a,

the frequency of the global mode is above the EGAM continuum and therefore the scaling

law is changed back to the square root dependency predicted by Eq. (6.51). The mode

width at the edge, on the other hand, gives a good match to Eq. (6.49), as shown by

Fig.6.6 (b).
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Figure 6.6: (a) The radial mode structure of the reversed shear case with increased field strength

B0 = 5T. (b) Scanning B0 from 3T to 9T, the radial mode width as a function of drift orbit width

near the axis (black squares) and at the edge (blue circles) for the reversed shear case with trend

lines.

6.4.3 Dependency on injection direction

In this section, the dependency of the mode frequency and growth rate on the injection

direction is studied by changing the sign of ωb (positive for co-passing and negative for

counter-passing) and keeping all other parameters unchanged. Figure 6.7 shows a scan of

the most unstable global mode frequency and growth rate as a function of the fast ion

proportion for the monotonic shear scenario and the reversed shear scenario, but assuming

either co-passing or counter-passing fast ions. The frequency of the mode in all the cases

decreases as the fast ion density increases, while the mode is becoming more unstable

at the same time, similar to the behaviour of the local solutions in Qu et al [173]. In

fact, the complex frequency of the global mode is mainly determined by the local EGAM

continuum as understood from the analysis in Section 6.4.1 and 6.4.2: for an extremum

mode, ω = ωex + ∆ω and ∆ω is small. Looking back into the EGAM local dispersion

relationship Eq. (6.33), the only distinction between the co/counter-passing ions comes

from the additional term proportional to n̄f,δ in Eq. (6.34). As stated in Section 6.2, the

sign of n̄f,δ will be different for co/counter-passing ions. All other terms come with ω2
b and

therefore the effect of direction is canceled, while cf is also identical for different injection

directions. Therefore, we would expect this additional term, originated from the fact that

counter-passing ions have inwardly shifted orbits and co-passing ions outward, to modify

the EGAM local continuum, and reflects into the distinction between counter-passing ions

and co-passing ions.

Figure 6.7 shows that the real frequency of the counter-passing mode is slightly below

the co-passing mode in both the monotonic shear and reversed shear case. But more

interestingly, the growth rate of the counter-passing mode is 50% larger than the co-

passing one for α = 0.05. This difference enlarges to 100% when the fast ion density is

15% the total ion density, indicating that the reactive EGAMs in the presence of counter-

passing ions is much more unstable than the one with co-passing ions given all other

conditions the same. As mentioned in Section 6.2.2 and Fig.6.1, the FOW effects (Pϕ
being a constant of motion) of counter-passing ions pushes the plasma inward, making nf
higher at higher B on a flux surface. This changes the density perturbation induced by
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Figure 6.7: The frequency (a) and the growth rate (b) for the monotonic case, with counter-

passing (red circles) and co-passing (blue squares) fast ions, scanned over fast ion proportion α.

(c)(d) The same scan for the reversed shear case. We have restricted our scan domain to α > 0.05

to satisfy the condition Lmode � Lorbit.

ṼE and the geodesic curvature, since on the RHS of Eq. (6.13) we have

∇ · (nf ṼE
B0

B
π̂) ≈ ṼE

∂

∂θ

(
nf
B2

0

B2

)
, (6.58)

whose absolute value becomes lower when nf is higher at higher B (e.g. if nf ∝ B2, the

contribution vanishes). Mathematically, for counter-passing particles, n̄f,δ is negative in

the dispersion relationship Eq. (6.34), lowering the first term in G(ω), even making it

zero when the contour shift is strong enough. On the other side, let us suppose that the

numerator of the first term in G(ω) is increased by ∆C, we reach approximately by Taylor

expanding Eq. (6.33) that

∆ω2 ≈
(ω2 − ω2

b )
2

αω4
b q

2
∆C, (6.59)

in which we have assumed Λ0 = 0 and thus cf = 0 for simplicity. For the profiles we

used, <(ω2) < ω2
b , while for instability we have =(ω2) > 0. Therefore, =[(ω2 − ω2

b )
2] < 0,

making =(∆ω2) > 0 if ∆C < 0, corresponding to a higher growth rate and a less stable

mode. To sum up, the counter-passing ions density contour shifts inward and shrinks the

first term in G(ω), leading to a negative ∆C and thus ∆ω2 , destabilizing the reactive

EGAMs. The story is reversed for the co-passing ions, in which the density contour shifts

outward, making ∆C > 0 and the mode is stabilized. It is possible that in the presence

of a strong damping (such as the ion Landau damping), the reactive EGAMs induced by
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co-passing ions are suppressed due to their relative lower growth rate, while in the counter-

injection scenario, the growth rate is strong enough to overcome the damping. Our result is

consistent with experimental observation that EGAMs are more often observed in plasmas

with counter-injection [45, 176].

6.5 Conclusion

Extending the previous model for local reactive EGAMs, we have added the finite drift

orbit width (FOW) effects to our three-fluid model under the assumption that Lorbit �
Lmode, leading to a second order ODE as the dispersion relationship. The model is valid

when the fast ion distribution function is beam-like: we have therefore used a single-

energy single-pitch distribution, consistent with the scenario of early beam heating when

the beam is not yet slowed down.

It has been found that with proper boundary conditions, a radially propagating struc-

ture can be formed when the q profile is either monotonic or reversed shear. In the

monotonic shear case, the global EGAM frequency is slightly higher than the local fre-

quency at the extremum on axis, while the growth rate is lower than the local growth

rate at the extremum. A qualitative analytic solution of the mode structure reveals the

relationship Lmode ∝ L
1/2
orbit near the axis and Lmode ∝ Lorbit at the edge. This finding is

later confirmed by a numerical scan which modifies Lorbit by increasing the field strength,

while keeping the EGAM local continuum unchanged. In the reversed shear case, for

Lorbit > 0.06a, the global EGAM is also an extremum mode residing on the top of the lo-

cal EGAM extremum at r ≈ 0.4a, the q = qmin surface. One would expect the relationship

between Lmode and Lorbit for the monotonic case to be applicable in the reversed shear

case. However, when Lorbit < 0.06a, the global EGAM frequency becomes lower than the

value at the extremum. This resembles the case when the energy is lower than the top

of the potential barrier in a quantum system, meaning that the mode must be localized

at the core where it is excited, although “tunneling” to the other side of the barrier (the

edge region) is permitted. In this case, Lmode is found to scale linearly with Lorbit.

A different relationship between Lmode and Lorbit was found by Fu[46] for the inverse

Landau damping driven EGAMs, owning to his assumption that those EGAMs are non-

extremum type. Nevertheless, the mode structure in his result and in our Fig.6.5(a) share

great similarity: the radial electric field peaks at mid radius and vanishes outward. This

is due to the fact that the dispersion relationships (second order ODEs) have almost the

same structure (but different coefficients), and we have used the same DIII-D profiles and

parameters as Fu. Distinguishing between different types of EGAMs merely by looking at

the radial mode structure is therefore difficult at the current stage. In order to enable a

detailed comparison between the mode structure of different types of EGAMs, we would

propose a thorough scan over the relationship between the EGAM mode structures of both

types and the equilibrium profiles.

Based on the two cases with different q profiles, we have also investigated the depen-

dency of the global mode frequency and growth rate on the injection direction. It is shown

that the global EGAM frequency in the presence of a counter-beam is slightly lower than

the co-beam, but is significantly more unstable compared to the co-beam case. Given the

same amount of damping, it is possible that the counter-beam reactive EGAM can en-

counter the damping while the co-beam one is suppressed, consistent with the observation

that EGAMs are more likely to appear in counter-beam experiments.

In our future work, we plan to release the assumption Lorbit � Lmode and takes into
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account the full drift orbit effects of the fast ions. This may involve the use of a non-local

fluid closure. The comparison to existing kinetic codes with full drift orbit effects such

as LIGKA [178] is also possible. In the perspective of validation, a survey of the mode

frequency is needed for different injection directions, while the measurement of the mode

structure can be available through spectroscopy with good temporal (∼ a few ms for beam

turn on) and spatial resolution (sufficient for radial structure) such as soft x-ray [179].

6.6 Appendix: Higher order O(εδl) terms in the equilibrium

density profile

If we define

nf,δl ≈ n̄f,δl
[
1− (1 + cf,δl)

r

R0
cos θ

]
cosl θ, (6.60)

after calculating the O(εδ) and O(εδ2) component of the equilibrium continuity equation,

we get that

cf,δ = cf +
1

2

Λ0

2− Λ0
cf ,

cf,δ2 =
2

2− Λ0
cf , (6.61)

which will be used in further calculation in Appendix 6.7.

6.7 Appendix: Detail derivation of the higher order fast ion

drift current

The parallel direction of Eq. (6.12) gives the equations for the parallel velocity. Re-

taining only the zeroth order terms in ε, we have in O(δ) that

Ṽ m=±2
f‖,δ = ∓1

2

V̄f,mag

ω ∓ 2ωb

(
d

dr
− 1

r

)
Ṽ m=±1
f‖,δ0 , (6.62)

Ṽ m=0
f‖,δ =

1

2

V̄f,mag

ω

(
d

dr
+

1

r

)
(Ṽ m=1
f‖,δ0 − Ṽ m=−1

f‖,δ0 ), (6.63)

and in O(δ2) that

Ṽ m=±1
f‖,δ2 = ±1

2

V̄f,mag

ω ∓ ωb

[(
d

dr
+

2

r

)
Ṽ m=±2
f‖,δ −

dṼ m=0
f‖,δ

dr

]
. (6.64)

The perpendicular direction of Eq. (6.12), if the polarization drift and the diamagnetic

drift are excluded, gives in O(δ) that

(∇ · ˜nVf⊥mag,δ)
m=±2 = ∓ i

2

(
d

dr
− 1

r

)
V̄f,mag

(
ñm=±1
f,δ0 + n̄f,δ0

2

1 + cf

Ṽ m=±1
f‖,δ0

ωbqR0

)
, (6.65)
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(∇ · ˜nVf⊥mag,δ)
m=0 =

i

2

(
d

dr
+

1

r

)
V̄f,mag

(
ñm=1
f,δ0 + n̄f,δ0

2

1 + cf

Ṽ m=±1
f‖,δ0

ωbqR0

−ñm=−1
f,δ0 − n̄f,δ0

2

1 + cf

Ṽ m=±1
f‖,δ0

ωbqR0

)
, (6.66)

in O(δ2) that

(∇ · ˜nVf⊥mag,δ2)m=±1 = ± i
2

(
d

dr
+

2

r

)
V̄f,mag

(
ñm=±2
f,δ + n̄f,δ0

2

1 + cf

Ṽ m=±2
f‖,δ

ωbqR0

)

∓ i
2

d

dr
V̄f,mag

(
ñm=0
f,δ + n̄f,δ0

2

1 + cf

Ṽ m=0
f‖,δ

ωbqR0

)

∓ i

1 + cf
V̄f,mag

(
1

2

d

dr
n̄f,δ

Ṽ m=∓1
f‖,δ0

ωbqR0
− 1

r
n̄f,δ

Ṽ m=±1
f‖,δ0

ωbqR0

)
, (6.67)

and finally in O(δ3) that

(∇ · ˜nVf⊥mag,δ3)m=0 =
i

2

(
d

dr
+

1

r

)
V̄f,mag

[
ñm=1
f,δ2 − ñm=−1

f,δ2

+
2

1 + cf

1

ωbqR0

(
n̄f,δ0 Ṽ m=1

f‖,δ2 − n̄f,δ0 Ṽ m=−1
f‖,δ2

+
1

2
n̄f,δṼ

m=2
f‖,δ −

1

2
n̄f,δṼ

m=−2
f‖,δ

1

4
n̄f,δ2 Ṽ m=1

f‖,δ0 −
1

4
n̄f,δ2 Ṽ m=−1

f‖,δ0

)]
, (6.68)

which are used in the calculation of the perturbed density and

〈∇ · J̃i⊥,δ3〉 = e(∇ · ˜nVf⊥mag,δ3)m=0. (6.69)

The perturbed density is calculated through the continuity equation Eq. (6.13), which

converts to

i(ω ∓ 2ωb)ñ
m=±2
f,δ = (∇ · ˜nVf⊥mag,δ)

m=±2 ± ik(2n̄f,δ0 Ṽ m=±2
f‖,δ + ikn̄f,δṼ

m=±1
f‖,δ0 )

± i

2R0

(
−cf,δn̄f,δ +

R0

r
n̄f,δ2

)
ṼE , (6.70)

iωñm=0
f,δ = (∇ · ˜nVf⊥mag,δ)

m=0, (6.71)

and

i(ω ∓ ωb)ñm=±1
f,δ2 = (∇ · ˜nVf⊥mag,δ2)m=±1 ± ik[n̄f,δ0 Ṽ m=±1

f‖,δ2 +
1

2
n̄f,δ(Ṽ

m=0
f‖,δ + Ṽ m=±2

f‖,δ )

+
1

2
n̄f,δ2(Ṽ m=±1

f‖,δ0 +
1

2
Ṽ m=∓1
f‖,δ0 )]± i

8R0

[
−n̄f,δ2(1 + 3cf,δ2) + 3

R0

r
n̄f,δ3

]
ṼE .(6.72)
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6.8 Appendix: Auxiliary equations

F3 = −3

8

ω5
b q

2

(ω2 − ω2
b )(ω

2 − 4ω2
b )
, (6.73)

F4 = −3

8
ω5
b q

2 ∂

∂ωb

[
ωb

(ω2 − 4ω2
b )(ω

2 − ω2
b )

]
, (6.74)

B3 = (1 + cf )3

(
4− 2cf,δ + 2

n̄f,δ2

n̄f,δ

R0

r

)
, (6.75)

B4 = (1 + cf )4, (6.76)

F5 = − 1

16
(1 + cf )3

[
ω3
b q

2

ω2 − ω2
b
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n̄δ3

n̄δ2

R0

r
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+

2ω5
b q
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1
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+
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+
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+
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+
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Chapter 7

Conclusion

In this thesis, we’ve focused on the use of fluid theories in studying the equilibrium

and stability of tokamak plasmas in the presence of fast ions generated by external heating

methods such as NBI and ICRH, as well as the physics implications.

Fast ions induce pressure anisotropy due to their low collision frequency and the strong

magnetic field. By considering the whole plasma (the thermal plasma and the fast ions) as

a single fluid with bi-Maxwellian distribution, the simplest model that captures pressure

anisotropy, we have studied various physics aspects of an anisotropic equilibrium model, as

well as its difference from the widely applied isotropic MHD model. In addition, we have

implemented pressure anisotropy and flow into the fix-boundary Grad-Shafranov numeric

solver HELENA, forming a new branch HELENA+ATF, and computed parameter scans

using this code. It is found that the diamagnetic current is mainly determined by the

perpendicular pressure, while the Shafranov-shift is determined by p∗, the average of the

perpendicular and parallel pressure. When an isotropic model is used to describe an

anisotropic plasma, the accuracy of the former is usually sacrificed for the accuracy of the

latter, in which a p∗ approximation is used, i.e. p∗ is taken to be the isotropic pressure.

The drawback of the isotropic approximation is divided into different regimes determined

by the magnitude of pressure anisotropy and the aspect ratio, with increasing problems

for tighter aspect ratio machines and larger anisotropy. For a ST such as MAST, the

effect of pressure anisotropy can therefore be significant if an isotropic model is used:

the diamagnetic current is different; the constant pressure surfaces are shifted from the

flux surfaces contrary to isotropic MHD prediction; and finally for a large anisotropy, the

magnetic geometry cannot be reproduced by an isotropic model so the q profile reported

by an isotopic equilibrium reconstruction can be distorted. As a consequence, a fully

anisotropic equilibrium model is recommended for STs with strong external heating, such

as MAST-U.

Building on the anisotropy equilibrium, we have also added pressure anisotropy into

plasma MHD stability code MISHKA, namely MISHKA-A. We have implemented different

fluid closures: the incompressible closure, the double-adiabatic closure (CGL), and the

recently developed single-adiabatic closure [20]. For the continuum in a large aspect ratio

low beta tokamak, different models differ mainly in the prediction of the sound wave

frequency and the geodesic acoustic frequency. This is also the case when we scan over

the magnitude of pressure anisotropy, while the q profile and the density profile are kept

constant. The impact of anisotropy on m = n = 1 ideal kink mode is also investigated

when only the fluid contribution is taken into account. The plasma is stabilized when

p⊥ < p‖, and destabilized if p⊥ > p‖, matching the prediction of Mikhailovskii [120]

quantitatively.

The new anisotropic equilibrium and stability tool chain is applied to study two MAST
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discharges: #18696@290ms, a discharge with only the inconsistency in the diamagnetic

current, and #29221@190ms, a discharge falls into the regime where all three problems

reported in Chapter 2 are presented if an isotropic model is used. Not surprisingly, equi-

librium reconstructions with/without pressure anisotropy for the latter discharge give

distinct q profiles: reversed shear when the p∗ approximation is used and monotonic shear

when anisotropy is resolved properly. The difference in q profile changes the basic prop-

erty of stability, leading to a wider TAE gap and TAE radial mode structure in the fully

anisotropy case. This difference in the q profile and therefore particle orbits, along with

the difference in mode structure and frequency, result in a higher growth rate and a lower

saturation level of the fully anisotropy case.

In summary, the fluid model has been proved useful in resolving the fast ion induced

pressure anisotropy and its impact on plasma equilibrium, stability and wave-particle

interaction. These fast ions have significantly modified the background plasma supported

modes and their nonlinear evolution. In the second half of the thesis, instead of taking

the whole plasma as a single fluid, we have considered the fast ions as a separate species.

The method has been proved successful in capturing some of the EPMs.

We have studied the linear dispersion relationship of the energetic geodesic acoustic

modes (EGAMs) in tokamaks, with NBI fast ions taken as a fluid having a collective transit

speed along the field lines. The lower frequency mode found by solving the dispersion

relationship is unstable. Good qualitative and quantitative agreement with the kinetic

theory is found when the beam is cold, even when fluid theory does not capture the physics

of wave-particle interaction, contrary to the previous understanding that these EGAMs

are driven unstable by energetic particle positive energy gradient. Further inspection on

the mode’s property reveals its great similarity to the two-stream instability in a beam

plasma system, and can transform from a two-stream-like instability (reactive instability)

to a bump-on-tail-like instability when the beam profile changes from a mono-energy one

to a gentle bump. We named the instability “reactive EGAMs” according to the nature of

the instability. We have also shown the consistency of the reactive EGAMs to the EGAMs

fast turn-on in DIII-D experiments.

Extending the fluid theory to capture the finite drift orbit width effects of the fast

ions, a global theory is developed to solve for the radial mode structure of the reactive

EGAMs, under the assumption that the drift orbit width is smaller than the mode width.

A robust global mode structure is formed with the mode width depending on the fast ion

drift orbit width, a typical characteristic of EPMs. We have found that the density change

on flux surfaces due to the FOW effect is responsible for the distinction between the co-

and counter-passing orbits. The counter-injection scenario has a higher growth rate than

the co-injection one, which helps to explain the experimental observation that EGAMs

are more commonly observed in counter-injection discharges.

The success of the fluid theory in modeling the reactive EGAMs consolidate the impor-

tant role it can play in capturing the physics of fast ions in tokamaks, and in complementing

the kinetic picture. Without the fluid theory and its simplicity and intuitive nature, the

physics of reactive EGAMs would not be revealed and would be confused with that of the

wave-particle interaction mechanism.

In conclusion, the fluid theory is proved useful and competent in the physic study of the

externally heated tokamak plasmas. Future works in the space of pressure anisotropy in-

volve an inspection on other types of waves and instabilities, such as the peeling-ballooning

modes which are responsible for the Edge Localized Modes (ELMs) [180]. A survey on

the magnitude of anisotropy and its impact on a variety of machines should be conducted,
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including MAST-U, NSTX and ITER. On the side of reactive EGAMs, a more realistic

description of fast ions in DIII-D plasma requires the relaxation of the small orbit size

assumption. A nonlinear study is also possible to fully cover the conversion from the

reactive EGAMs to the wave-particle interaction driven ones as the beam slows down.

Finally, more general application of the fluid theory on tokamak plasmas with external

heating should be further investigated. For instance, the impact of toroidal and poloidal

flow on the plasma configuration could be examined across a wider range of parameters.

The approach to model EGAMs could be extended to other modes observed immediately

after beam turn on.
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Appendix A

Detail derivation of local fluid

EGAMs

A.1 Model

A.1.1 Equilibrium

Our work extends the fluid model of the conventional GAMs by Sgalla et al [75],

adding multiple fluid components and the coupling to sound waves. We start with a

tokamak plasma with large aspect ratio, circular cross section and low β. We can now

use a simplified set of coordinate (r, θ, ϕ), labeling the radial coordinate, the poloidal and

toroidal angle, respectively. The outward shift of the flux surfaces, namely the Shafranov

shift, is ignored in our treatment. The major radius and the magnetic field strength are

approximately given by R ≈ R0(1 + r/R0 cos θ) and B ≈ B0(1 − r/R0 cos θ). The unit

vector parallel to the direction of the magnetic field is given by

b ≡ B
B

=
Bθ
B
eθ +

Bϕ
B
eϕ. (A.1)

For convenience, we define the bi-normal unit vector π ≡ b× er. So we now have another

set of orthogonal unit vector triad (er,π, b). The geodesic curvature is defined as κg ≡ κ·π,

where κ ≡ b · ∇b is the magnetic field curvature. We also have the identity

∇ · π ≈ −π · ∇ lnB ≈ (b · ∇π) · b = −κg ≈ − sin θ/R0, (A.2)

which are all considered as geodesic curvature.

In the local treatment, we ignore orbit FOW and FLR effects, making δ ≡ qρs �
Lmode . a, where ρs is the Larmor radius and qρs gives approximately the drift orbit

width.

We assume that the plasma consist of s ion species (subscript “s” for the index of

species), each species of ion has a mass ms and a charge e (singly charged). We note that

they can either be different types of ions, or the same type of ions but with a different

energy as considered in this section, i.e. thermal ions and fast ions. The density ns, the

flow V0s, the parallel pressure p‖s and the perpendicular pressure p⊥s can be obtained

by integrals of the guiding center distribution Fs(µ,E, r), where µ = msv
2
⊥/2B is the

magnetic moment, E = msv
2/2 the energy and r the flux surface (the r dependency here

is unimportant and removed in later treatments due to our assumption of small orbit

width).
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For density ns, it’s partial derivatives with respect to B is given by(
∂ns
∂B

)
r

=
ns + CBs

B
. (A.3)

The equilibrium flow V0s is a combination of a pure toroidal flow and a flow along the

field line [181]. In this work, we only consider the flow along the field line, which gives the

form

V0s = V0sb =
ψs(r)

ns
B. (A.4)

This equilibrium parallel velocity will be zero for the thermal ions and electrons in our

work, but finite for the hot ion population. Finally, the poloidal dependency of p‖s and

p⊥s are calculated as (
∂p‖s
∂B

)
r

=
p‖s − p⊥s +msCBsV

2
0s

B
, (A.5)(

∂p⊥s
∂B

)
r

=
2p⊥s + ĉs

B
, (A.6)

where CBs and ĉs are kinetic integrals.

In this work, we follow the definitions in Antonsen and Lee [106], where
ns
V0s

p‖s
p⊥s

 =
2πB

m2
s

∑
v‖>0,<0

∫ 
1

v‖
(v‖ − V0s)

2

µB

Fs
1

|v‖|
dµdE. (A.7)

The derivatives of these quantities with respect to r,B and Φ can be obtained from Eq.

(A.7), noting that v‖ =
√

2E − 2µB/
√
ms and has a dependency on B as well. The results

are

nBs = (ns + CBs)/B,

p‖Bs = (p‖s − p⊥s)/B +msV
2

0sCBs/B,

p⊥Bs = (2p⊥s + ĉs)/B,

(A.8)

where (
CBs
ĉs

)
=

2πB

m2
s

∑
v‖>0,<0

∫ (
µB

(µB)2

)
∂Fs
∂E

1

|v‖|
dµdE. (A.9)

Due to their fast transit speed, the electrons are assumed to be isothermal on a flux

surface with a temperature Te. The quasi-neutrality condition provides a relationship

between electron density and ion density, which writes

n0 =
∑
s

ns, (A.10)

in which n0 is the electron density and e is the charge of a electron. Since ns has a non-

trivial poloidal dependency, we would expect n0 to depend on poloidal angle as well. This
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dependency is sustained by a parallel equilibrium electric field and electrostatic potential

Φ. This equilibrium parallel electric field is a next order correction in the drift ordering

(the zero order being the E × B drift), and therefore not presented in the ideal MHD

theory. We note that the removal of this equilibrium parallel electric field will not change

the stability result substantially, therefore we will drop it from now on.

A.1.2 Ion response

The GAMs are electrostatic modes with n = 0. We retain only the m = 0 part of the

perturbed electrostatic potential and two sidebands with m = ±1, written as

Φ̃ = Φ̃0(r)e−iωt + Φ̃+1(r)eiθ−iωt + Φ̃−1(r)e−iθ−iωt. (A.11)

We have assumed all the perturbed quantities are proportional to e−iωt, where ω = ωr+iγ

is the complex frequency, with ωr and γ the real frequency and the growth rate, respec-

tively. The response of ion pressures, p̃‖s and p̃⊥s, are described by the double-adiabatic

(CGL) fluid closure, given by

dp̃‖s
dt

= −p‖s∇ · Ṽs − 2p‖sb · (b · ∇Ṽs), (A.12)

dp̃⊥s
dt

= −2p⊥s∇ · Ṽs + p⊥sb · (b · ∇Ṽs). (A.13)

The perturbed velocity consists of both the perpendicular and parallel components, written

as

Ṽs = ṼE0(r)e−iωt
B0

B
π + [Ṽs+(r)eiθ−iωt + Ṽs−(r)e−iθ−iωt]b+O (δ) , (A.14)

where the O(δ) terms are higher order corrections such as the magnetic curvature/gradient

drift and the diamagnetic drift. Under our assumption of zero orbit width giving local

GAM solutions, it is sufficient to keep only ṼE , the E ×B drift velocity in the perturbed

perpendicular velocity in the CGL equations, which is given by

ṼE ≈
Ẽrer ×B

B2
e−iωt ≈ Φ̃′0

B
e−iωtπ = ṼE0(r)

B0

B
e−iωtπ, (A.15)

where we have used Φ̃0/Φ̃±1 � 1, an assumption that we will justify later.

Using Eq. (A.2) and extending p̃‖s and p̃⊥s similarly into poloidal Fourier harmonics,

we obtain to the zeroth order of r/R, p̃‖s0 = p̃⊥s0 = 0 and

p̃‖s±1
= ±

〈
4p‖s −B

(
∂p‖s
∂B

)
r

〉
1

2R0ωs±
ṼE0 ±

k

ωs±

〈
3p‖s

〉
Ṽs±, (A.16)

p̃⊥s±1 = ±
〈

3p⊥s −B
(
∂p⊥s
∂B

)
r

〉
1

2R0ωs±
ṼE0 ±

k

ωs±
〈p⊥s〉 Ṽs±, (A.17)

in which k = 1/qR0 and ωs± = ω ∓ k 〈V0s〉 is the Doppler shifted frequency, while 〈. . .〉
indicates the flux surface average. We can now see clearly that the perturbed pressures only

have m = 1 components. Also, ṼE , therefore Φ̃0, drives the m = 1 pressure perturbation

through the geodesic curvature.
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The ion density perturbation is given by the continuity equation:

∂ñs
∂t

= −∇ · (nsṼs)−∇ · (ñsVs). (A.18)

Again using Eq. (A.2) and retaining the zeroth order terms in r/R, the m = ±1 harmonics

of the ion density perturbation are given by

ñs±1 = ±
〈

2ns −B
(
∂ns
∂B

)
r

〉
1

2R0ωs±
ṼE0 ±

k

ωs±
〈ns〉 Ṽs±, (A.19)

and ñs0 = 0.

A.1.3 Electron response

Since the electron transit frequency is much higher than the frequency of the mode, the

response of electron is assumed to be isothermal (alias adiabatic in kinetic theory), which

means p̃e = ñeTe, with p̃e and ñe the perturbed electron pressure and density, respectively.

Ignoring electron inertial, the momentum equation of electron gives

0 = n0e∇Φ̃− n0eṼe ×B − Te∇ñe, (A.20)

where Ṽe is the perturbed electron velocity. We have used the electrostatic approximation,

setting the perturbed magnetic field to be zero. The parallel direction of Eq. (A.20) gives

ñe = n0e
Φ̃−

〈
Φ̃
〉

Te
, (A.21)

in which we have neglected the first term of Eq. (A.20) that is O(r/R). Due to particle

conservation, 〈ñe〉 = 0. The m = ±1 harmonics are obtained by expanding Eq. (A.21)

poloidally, which are given by

ñe±1 = 〈n0〉 e
Φ̃±1

Te
. (A.22)

Taking in to account Eq. (A.19) and the quasi-neutrality condition Eq. (A.10), we will

reach

ñe±1 = ± ṼE0

2R0

∑
s

1

ωs±

〈
2ns −B

(
∂ns
∂B

)
r

〉
± k

∑
s

〈ns〉
ωs±

Ṽs±, (A.23)

with the perturbed electron pressure obtained by p̃e = ñeTe.

Equating Eq. (A.19) and (A.21), one can obtain the following relationship:

Φ̃m=±1/Φ̃m=0 ∼ O(εδ
√
Te/mfV

2
f0) and thereby Φ̃m=±1 is ignored in the E ×B drift.

A.1.4 The momentum equation

The perturbed momentum equation for each species s has the form

msns

(
∂Vs
∂t

+
ñs
ns
V0s · ∇V0s + Vs0 · ∇Ṽs + Ṽs · ∇Vs0

)
=

nse(−∇Φ̃ + Ṽs ×B)−∇p̃⊥s − (p̃‖s − p̃⊥s)κ
−b∇ · [(p̃‖s − p̃⊥s)b]. (A.24)
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Adding up Eq. (A.24) for all ion species and Eq. (A.20), the potential gradient term

cancels out because of charge neutrality. Also using the definition for perturbed current

J̃ =
∑

s nseṼs − n0eṼe, the sum of nseṼs × B terms becomes J̃ × B. This perturbed

current is then eliminated by the charge neutrality condition ∇ · J̃ = 0 and the fact

that
〈
∇ · J̃‖b

〉
= 0, i.e. by taking the cross product of both sides of the added up

equation and b/B, followed by a divergence operation, and finally a flux surface average.

This treatment also eliminates the parallel components of Eq. (A.25), leaving only the

perpendicular components. After integrating both sides over r the considering Jr = 0 on

axis, the result is given by

〈ρ〉ωVE0 =
1

2R0

∑
s

[p̃⊥s+1 − p̃⊥s−1 + p̃‖s+1
− p̃‖s−1

+ms(ñs+1 − ñs−1)
〈
V 2

0s

〉
+2ms 〈nsV0s〉 (Ṽs+ − Ṽs−)] +

1

R0
(ñe+1 − ñe−1)Te, (A.25)

where ρ =
∑

smsns is the mass density. Again we have kept the leading order in r/R and

ignored the radial change of equilibrium quantities.

For the parallel component of Eq. (A.24), we use Eq. (A.20) to eliminate the electric

field term for individual species s. The m = ±1 harmonics are then given by

ms 〈ns〉ωs±Ṽs± = ±ms 〈V0s〉
2R0

〈
B

(
∂ns
∂B

)
r

〉
ṼE

±k
(
p̃‖s±1

+

〈
ns
n0

〉
ñe±1Te

)
. (A.26)

Equation (A.25) and (A.26), along with Eq. (A.16), (A.17) and (A.23), close the system

and define an eigenvalue problem of ω, i.e. the dispersion relationship.

A.2 Dispersion relationship for thermal plasma with bump-

on-tail fast ions

A.2.1 Bump-on-tail fast ions

We generalize the bump-on-tail fast ion distribution function

Ff (v‖, v⊥) = A exp

[
−
mf (v‖ − V0f )2 +mfv

2
⊥

2Tf

]
, (A.27)

to a distribution function F (µ,E) that satisfy conservation of energy and magnetic mo-

ments on a flux surface. We rewrite A.27 in to a function of µ, E, r, B and Φ, given

by

Ff = A exp

[
−
E +mV 2

0f/2 +
√

2m(E − µB0)V0f

Tf

]
. (A.28)

We have replaced
√

2m(E − µB) by
√

2m(E − µB0), making Ff = Ff (µ,E) independent

of B. For this distribution function, we have 〈p‖f 〉 = 〈p⊥f 〉 = 〈nf 〉Tf . In the large aspect
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ratio scenario, the kinetic integrals are given by

CBf ≈ −nf + nf V̄0fRe[Z
(
−V̄0f

)
],

ĉf ≈ −2p⊥f + 2p⊥f V̄0fRe[Z
(
−V̄0f

)
], (A.29)

where Z(x) is the plasma dispersion function and

V̄0f = V0f/

√
2Tf
mf

. (A.30)

The value of V̄0fRe[Z(−V̄0f )] as a function of V̄0f is plotted in Fig.A.1. The figure shows
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Figure A.1: The value of Re[V̄0fZ(−V̄0f )] as a function of V̄0f .

that in the limit V̄0f � 1, we have V̄0fRe[Z(−V̄0f )] ≈ 1.

A.2.2 Dispersion relationship in matrix form

The simplest fluid model of NBI driven EGAMs consists of three species: the thermal

electrons, the thermal ions, and the fast ions originated from NBI. The thermal ions and

the fast ions share the same mass mi. Substituting Eq. (A.16), (A.17) and (A.23) into

Eq. (A.25) and (A.26) for each species, we can reach a set of equations in the matrix form

given by

D(Ω) · V = 0, (A.31)

in which V is the column vector V = (Ṽf−, Ṽi−, ṼE , Ṽi+, Ṽf+)T and

D11 = α
1

2q2

τf + ατe
Ω + v/q

− α(Ω + v/q), (A.32)

D12 = D54 = α(1− α)
1

2q2

τe
Ω
, (A.33)

D13 = −1

2
αv(1 + cf ) +

α

q

[
τf

Ω + v/q
+
τe
4

(
(1− α)

2

Ω
+ α

1− cf
Ω + v/q

)]
(A.34)

D21 = α(1− α)
1

2q2

τe
Ω + v/q

, (A.35)

D22 = D44 = (1− α)

[
1

2q2

3 + (1− α)τe
Ω

− Ω

]
, (A.36)

D23 =
1− α
q

[
1

Ω
+
τe
4

(
(1− α)

2

Ω
+ α

1− cf
Ω + v/q

)]
, (A.37)
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D31 = −αv +
α

q

4τf + 2τe + 2v2

4(Ω + v/q)
, (A.38)

D32 = D34 =
1− α

2q

2 + τe
Ω

, (A.39)

D33 = −Ω +
1− α

Ω

(
7

4
+ τe

)
+

αΩ

Ω2 − v2/q2

[
1

2
τe(1− cf ) +

1

2
v2(1− 2cf )− 1

2
τfcf +

5

4
τf

]
,

(A.40)

D35 = αv +
α

q

4τf + 2τe + 2v2

4(Ω− v/q)
(A.41)

D43 =
1− α
q

[
1

Ω
+
τe
4

(
(1− α)

2

Ω
+ α

1− cf
Ω− v/q

)]
, (A.42)

D45 = α(1− α)
1

2q2

τe
Ω− v/q

, (A.43)

D53 =
1

2
αv(1 + cf ) +

α

q

[
τf

Ω− v/q
+
τe
4

(
(1− α)

2

Ω
+ α

1− cf
Ω− v/q

)]
, (A.44)

D55 = α
1

2q2

τf + ατe
Ω− v/q

− α(Ω− v/q), (A.45)

in which

Ω = ω/

√
2Ti
miR2

0

, v = 〈V0f 〉/
√

2Ti
mi

, τf =
Tf
Ti
, τe =

Te
Ti
, cf =

〈CBf 〉
〈nf 〉

, (A.46)

and the density fraction

α =
〈nf 〉

〈nf 〉+ ni
. (A.47)

Letting |D(Ω)| = 0 gives the dispersion relationship used in Chapter 5 which is solved

numerically using an ordinary root finder.

A.2.3 Reduction to a single energy beam

We now derive the dispersion relationship for an extreme case, in which a single energy

beam is used as the fast ion distribution function, i.e. τf → 0. We also consider the case

where the fast ion proportion is small, meaning that α � 1. In such a limit, we can

ignore the electron response to the fast ion density, since the perturbed electron pressure

due to the perturbed fast ion density through quasi-neutrality is small compared to the

perturbed fast ion pressure itself, with τe � v2. Using these assumptions, we simply get

that

Ṽf+ =
1

2

v

Ω− v/q
ṼE , (A.48)

Ṽf− = −1

2

v

Ω + v/q
ṼE . (A.49)
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Substituting Eq. (A.48) and (A.49) into Eq. (A.31), we reaches a reduced matrix form

given by  D22 D32 0

D32 D′33 D32

0 D32 D44

 Ṽi−
ṼE
Ṽi+

 = 0, (A.50)

in which the new D′33 is given by

D′33 = −ΩD0(Ω2), (A.51)

and

D0(Ω2) = 1− 1− α
Ω2

(
7

4
+ τe

)
− αG(Ω2), (A.52)

G(Ω2) =
3

2

v2

Ω2 − v2/q2
+

v4/q2

(Ω2 − v2/q2)2
. (A.53)

We let Ω0 be the frequency that makes D0(Ω0) = 0. Assuming the coupling to contin-

uum is weak, i.e. q � 1, we get from the determinant of Eq. (A.50) being zero that the

solution to the dispersion relationship differs from Ω2
0 by

Ω2 − Ω2
0 =

1− α
2q2

(2 + τe)
2Ω−4

0

(
dD0

dΩ2

)−1

, (A.54)

describing the coupling to the bulk ion sound waves which ∼ O(q−2). Equivalently the

dispersion relationship can be written into the form of Eq. (5.8)

D(Ω2) = 1− 1− α
Ω2

[
7

4
+ τe +O(q−2)

]
− αG(Ω2), (A.55)

where the contribution from the sound wave coupling is added.



Appendix B

An anisotropic and flowing model

for converging magnetic field

B.1 Introduction

Plasma facing material is a crucial research field in fusion science and technology [182].

Linear plasma devices, although cannot reproduce full tokamak conditions, are capable of

generating plasmas with similar property to the edge of tokamaks, namely the scrap-off

layer (SOL), for the purpose of material testing. The MaGnetized Plasma Interaction Ex-

periment (MAGPIE) [183] is a linear plasma device at the Australian National University.

Figure B.1 gives a schematic plot of MAGPIE. MAGPIE consists of a vacuum tube, a set

of source coils and a set of target coil. The plasma in MAGPIE is generated by helicon

wave heating, through a set of helicon field coils located at z = 0m. The plasma travels

upstream (to higher z) along the field lines into the target region and is pinched by the

converging magnetic field. A target plate is located at the end of the target region where

the testing material will be placed and interact with the plasma.

Figure B.1: A schematic view of the MAGPIE [183].

Besides its main purpose of material testing, the device is also active in many other

research topics of plasma physics, such as helicon waves [184] and negative ion tech-

niques [185]. Various diagnostics are installed currently on MAGPIE, including Langmuir

probes [186] and optic diagnostics, making the plasma profiles in MAGPIE well mea-

115
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sured. Recently, optical diagnostics on MAGPIE have identified the possible existence of

an anisotropic ion temperature. Also, the azimuthal flow reverses its direction at around

z = 0.25m, which remains unexplained at the moment. It is possible to extend the cur-

rent knowledge of pressure anisotropy and flow in tokamaks to capture the physics of flow

and anisotropy in a linear pinched devices, enlighten by existing theories of linear devices

[187, 188, 189]: this is the purpose of Appendix B.

In this appendix, we will examine argon discharges in which pressure anisotropy and

flow reversal were observed. We will first introduce a set of magnetic coordinates to

describe the pinched magnetic geometry. The basic fluid equations are then written in

these magnetic coordinates in MAGPIE conditions. We will first explore the simplest

scenario without collisions, plasma source and sink, and pressure anisotropy. These non-

ideal effects will be added one by one to study their impact on the plasma equilibrium

profiles.

B.2 Model

B.2.1 Magnetic Geometry

The plasma induced magnetic field is weak, therefore we take the externally generated

field as the MAGPIE magnetic field. Close to the center of the current carrying coils, the

field in z direction Bz is assumed to be function of z only, with Br obtained from the

Maxwell equation ∇ ·B = 0, giving

B = Bz(z)ez −
1

2
r
dBz
dz
er. (B.1)

In this work, we will use a set of magnetic coordinates instead of the cylindrical coor-

dinates (R, θ, z), which has the advantage of separating the parallel/perpendicular force

balance. We write the magnetic field B into a contravariant form, given by

B = −∇ψ ×∇θ, (B.2)

with

ψ = −1

2
Bz(z)r

2. (B.3)

For an externally generated magnetic field, we have inside the plasma ∇×B = 0. There-

fore, a scalar magnetic potential ξ exists, having B = −∇ξ. We note that although Eq.

(B.1) does not satisfy ∇ ×B = 0 exactly, due to the omission of the radial dependency

of Bz, we still have ∇ × B ≈ 0 as long as the calculation is carried on near r = 0 and

Br � Bz. Integrating along the field line, the magnetic potential ξ is then approximately

given by

ξ = −
∫ z

0
B(z′)dz′ +

1

4
r2dBz

dz
. (B.4)

The axial magnetic field as a function of z is plotted in Fig.B.2 (a) for Isource = 50A and

Itarget = 450A, with B increasing from 0.015T to 0.09T at z = 0.45m. We will be using

this field setting throughout the appendix. The contour of constant ψ and ξ are shown

in Fig.B.2 (b) and (c) respectively. The coordinate ψ labels the flux surfaces, having the

property ∇ψ ·B = 0. Equation (B.3) and Figure B.2 (b) indicates that the characteristic

radius satisfy r2
cB = constant on a constant ψ surface due to flux conservation. The

magnetic potential ξ contours mostly coincide with constant z surfaces, and therefore can
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be used as an axial coordinate.

(a)

(b)

(c)

Figure B.2: (a) The axial magnetic field Bz as a function of z. (b) The radial coordinate ψ as a

function of r and z. (c) The axial coordinate ξ as a function of r and z.

Now (ψ, θ, ξ) are used as our new coordinate, with the conversion between these mag-

netic coordinates and the cylindrical coordinate given by Eq. (B.3), (B.4) and θ = θ.

The covariant basis vectors ∇ψ, ∇θ and ∇ξ are perpendicular to each other, labeling

the radial(cross-field), azimuthal and parallel direction, respectively. From Eq. (B.3) and

(B.4), the metrics of the magnetic coordinates are given by

g11 = r2B2, g22 =
1

r2
, g33 = B2, (B.5)
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and the Jacobian is given by

J =
1√

g11g22g33
=

1

B2
. (B.6)

In addition, the covariant and contravariant components of the magnetic field are simply

written as

Bξ = −1, Bξ = −B2. (B.7)

B.2.2 Continuity equation

The continuity equation for the single fluid is given by

∇ · (minV ) = min(S − L), (B.8)

in which mi is the ion mass, n the ion number density, V the fluid velocity, S the source

term and L the loss term. The density of the single fluid is given by ρ ≈ min, since

me/mi � 1. Writing Eq. (B.8) into the magnetic coordinates, we get

∂

∂ψ

nV ψ

B2
+

∂

∂ξ

nV ξ

B2
= n

S − L
B2

, (B.9)

in which V ψ and V ξ are contravariant components of V .

A quasi neutrality condition is also needed, given by

∇ · J = 0. (B.10)

Equation (B.10) can be written as

∂

∂ψ

Jψ

B2
+

∂

∂ξ

Jξ

B2
= 0, (B.11)

in which Jψ and Jξ are contravariant components of J .

B.2.3 Momentum Equation

The single fluid momentum equation is given by

minV · ∇V = J ×B −∇ · P, (B.12)

in which P is the pressure tensor. In this work, we ignore the FLR effects and use the CGL

diagonal pressure tensor. If we further assume a Maxwellian distribution for the electrons

and a bi-Maxwellian distribution for the ions, the pressure tensor will become

P = ZnTeI + nT⊥i(I− bb) + nT‖ibb, (B.13)

in which Z is the ion number charge, Te the electron temperature, T⊥i the ion perpendic-

ular pressure, T‖i the ion parallel pressure, I the unit dyad, and b = B/B the unit vector

along the field line. All temperatures are in the unit of energy (e.g. electron volt).

We now write Eq. (B.12) into its covariant form, with the components in ∇ψ, ∇θ and
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∇ξ directions given by

min

[
V ψ

rB

∂

∂ψ

V ψ

rB
− 1

2
(V θ)2∂r

2

∂ψ
+

(V ξ)2

B3

∂B

∂ψ
+ V ξ ∂

∂ξ

V ψ

r2B2

]
= Jθ − Z∂nTe

∂ψ
− ∂nT⊥i

∂ψ
− n(T‖i − T⊥i)

∂ lnB

∂ψ
, (B.14)

min

[
V ψ ∂

∂ψ
V θr2 + V ξ ∂

∂ξ
V θr2

]
= −Jψ, (B.15)

min

[
V ψ ∂

∂ψ

V ξ

B2
− (V ψ)2

2

∂

∂ξ

1

r2B2
− (V θ)2

2

∂r2

∂ξ
+
V ξ

B

∂

∂ξ

V ξ

B

]
= −Z∂nTe

∂ξ
−
∂nT‖i

∂ξ
+ n(T‖i − T⊥i)

∂ lnB

∂ξ
. (B.16)

B.2.4 Generalized Ohm’s law

The generalized Ohm’s law is derived from the momentum equation for the electrons.

Ignoring the electron inertial, we have

−∇Φ + V ×B = ηJ +
1

Zen
[J ×B − Z∇(nTe)− 0.71Znbb · ∇Te] , (B.17)

in which Φ is the electrostatic potential, η the resistivity and the last term is due to the

thermal force along the field line. The value of η is given by

η =

√
meZe

2

6
√

2π3/2ε20T
3/2
e

ln Λ, (B.18)

in which me is the electron mass, ε0 is the vacuum permittivity and ln Λ ≈ 10 is the

Coulomb logarithm constant.

Equation (B.17) is transfered into the covariant form given by

−∂Φ

∂ψ
+ V θ = ηJψ +

1

Zen

[
Jθ − Z∂nTe

∂ψ

]
, (B.19)

−V ψ = ηJθ −
1

Zen
Jψ, (B.20)

−∂Φ

∂ξ
= ηJξ +

1

Zen

[
−ZTe

∂n

∂ξ
− 1.71Zn

∂Te
∂ξ

]
, (B.21)

in which we have also used the covariant components of J . The set of equations Eq. (B.9),

(B.11), (B.14), (B.15), (B.16), (B.19), (B.20) and (B.21) closes the system of equations

with eight unknowns (n, Φ, three components of V and J), if the temperature profiles are

specified.
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B.3 Collisionless plasma

We first consider the scenario when the resistivity η = 0, i.e. the collision between

the electrons and the ions is ignored. An inspection of the set of equations shows that Jξ

only appears in the quasi-neutrality condition Eq. (B.11) to balance the radial current

Jψ. Therefore, the variable Jξ and Eq. (B.11) are removed from our system of equations

and will be evaluated afterwards. We further eliminate the variable Jψ by substituting

Eq. (B.20) into Eq. (B.15). Equation (B.15) is a statement of the conservation of the

angular momentum mωr2 along the motion of the fluid element, since V θ = ω and ω is

the azimuthal angular rotation frequency. An ordering analysis on Eq. (B.15) shows that

V ψ

V ξr

L

r
∼ ω

ωci
� 1, (B.22)

in which L is the typical axial length of the machine and ωci = ZeB/mi is the ion cyclotron

frequency. The contribution from the first term in Eq. (B.9) is therefore less important

than the second term.

Based on the experimental observations that the flow speed is less than the ion acoustic

speed
√
Te/mi, an iterative method can be used to solve the system of equations. Ignoring

the LHS of Eq. (B.16) and substituting Eq. (B.9) to eliminate n, we will reach

∂ lnV ξ

∂ξ
− S − L

V ξ
= 2

∂ lnB

∂ξ
+
∂ lnTe
∂ξ

+
1

ZTe

∂T‖i

∂ξ
−
T‖i − T⊥i
ZTe

∂B

∂ξ
. (B.23)

The solution of Eq. (B.23), V ζ as a function of ψ and ξ, is substituted into Eq. (B.9) to

solve for the density profile with the first term ignored. The potential Φ is then known

by integrating Eq. (B.21) along constant ξ (magnetic field line). In parallel, with the

LHS of Eq. (B.14) ignored in the initial guess, Jθ is readily obtained from Eq. (B.14).

Substituting the result of Jθ into Eq. (B.14), we will finally get V θ. Our initial iteration

is completed after Jψ is obtained from Eq. (B.15) with the solved profiles. In the next

step, the profiles of the first iteration are substituted into the first term of Eq. (B.9) and

the LHS of Eq. (B.14) and (B.16). The above procedure is then repeated with the newly

added terms calculated from the profiles of the last iteration. The iteration is carried on

until the profiles reach a convergence.

We specify the electron temperature profile to be

Te(ψ, ξ) = Te0 exp

[
− ψ

aTeψ1
− z(ψ, ξ)

bTeL

]
, (B.24)

in which ψ1 is the value of ψ at r = 0.05cm and z = 0, and L = 0.6 is the length of

the target region. The parameter aTe and bTe set the radial and axial decay length of

the electron temperature profile, while Te0 is the electron temperature at ψ = ξ = 0.

The ion temperature is assumed to be anisotropic T‖i 6= T⊥i, following the same trend as

Eq. (B.24), but with different parameters T‖i0, T⊥i0,aT‖i,aT⊥i,bT‖i and bT⊥i. The density

profile at ξ = 0 is given by

n(ψ, ξ = 0) = n0 exp

[
− ψ

anψ1

]
, (B.25)

where n0 = n(ψ = ξ = 0) and an is a parameter defines the radial decay length of n. The

n and Te profile match qualitatively the experimental probe measurement in Samuell et
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al [186] and Chang et al [184]. An inspection of Eq. (B.14) and Eq. (B.19) shows that in

the absence of neutral collisions, the radial electric field produces an azimuthal flow and

is not coupled to other equations, when the flow speed is much slower than the ion sound

speed, i.e. there is no restriction on the radial electric field. Therefore we have a freedom

to prescribe Φ on ξ = 0 surface, written as

Φ(ψ, ξ = 0) = Φ0 exp

[
1− ψ

aΦψ1

]
, (B.26)

which uses the gauge Φ = 0 at ψ = ξ = 0.

B.3.1 Isotropic, source/sink-free plasma

In the simplest setup of the model, we neglect the contribution from the plasma source

and sink. The equilibrium parameters we have used are Te0 = 4.5eV, T‖i0 = T⊥i0 = 1eV,

aTe = aT‖i = aT⊥i = 1, bTe = 3, bT‖i = bT⊥i = 0.2, n0 = 5× 1018m−3, an = 2, Φ0 = −1V

and aΦ = 1. The parallel velocity V‖ = V ξ/B as a function of z on axis is shown in

Fig.B.3, with the boundary condition V ξ/B = 150m/s at ξ = 0. The solution is converged

after the second iteration. The on-axis axial velocity mainly follows the trend of the field

strength B, i.e. increases axially for z < 0.4m, peaks at around z = 0.4m, and finally

decreases. Equation (B.9) states that the mass flow in a magnetic tube, nV‖S, should be

constant along the tube if the cross field transport (the first term) is not important, with

S ∼ 1/B the area of the tube cross section and V ξ = V‖B. For Te � T‖i, T⊥i, Eq. (B.23)

is simplified to V ξ/(TeB
2) = constant on a magnetic field line, in the case that the flow

speed is much less than the ion sound speed, giving the trend of V‖ in Fig.B.3.

Figure B.3: The parallel velocity V‖ = V ξ/B as a function of z on axis, for the initial iteration

(dashed) and the second iteration (solid).

The contour of n, Φ and Vθ are plotted in Fig.B.4, Fig.B.5 and Fig.B.6, respectively.

Figure B.4 shows a clear pinch of the plasma when the field increases: the characteristic

radius is reduced and reaches its minimum at z = 0.4m where the magnetic field strength

reaches its maximum. Along one magnetic field line, the density builds up along the axis,

as a result of nTe being a constant on a magnetic field line by integrating Eq. (B.16) and

assuming Te � T‖i, T⊥i. Inspection of Fig.B.5 shows the on-axis potential Φ first increases

along the axis, reaching its peak around z = 0.2m and then decreases. This is the result of a

competition between the positive density gradient and the negative temperature gradient.

The azimuthal flow velocity Vθ is determined by the combination of the radial electric

field and ion pressure gradient, which balances the axial electric field. Figure B.6 shows

a azimuthal flow reversal point at around z = 0.25m, after which the pressure gradient
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Figure B.4: The density contour, in the unit of 1018m−3.

Figure B.5: The potential contour, in the unit of V.

vanishes and the radial electric field dominates the force balance. Similar Vθ reversal is

reported in the experiment using optic diagnostics, but all at the same z regardless of

radius, which requires further investigation.

B.3.2 Adding anisotropy

In linear devices with large end particle losses, the plasma will be anisotropic if suffi-

cient particles are lost before they are thermalized. In this section, we will investigate the

effect of anisotropy to the force balance. Equation (B.14) and (B.16) shows that the per-

pendicular and parallel pressure have different roles in the force balance: T‖i affects mainly

the parallel force balance, while T⊥i affects main the perpendicular force balance. The

impact of pressure anisotropy on the parallel force balance is by changing the ion density,

the potential and V ξ, while in the perpendicular direction it changes the azimuthal flow

profile through its dependency on the radial gradient of the perpendicular ion pressure.

Figure B.7 shows the V‖ profile for three cases: the isotropic case with T⊥i0 = T‖i0 = 1eV,

halfing T‖i0 and halfing T⊥i0. As expected, changing T‖i0 to half of the isotropic case
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Figure B.6: The Vθ contour, in the unit of m/s.

induces a more notable change in V‖ compared to the case in which T⊥i0, increasing its

maximum from 650m/s to 760m/s. On the other hand, changing T⊥i0 to half of that in

the isotropic case reduces the flow speed slightly.

Figure B.7: The axial velocity on axis, for the isotropic case and two anisotropic cases with

T⊥i > T‖i and T⊥i < T‖i, respectively.

Figure B.8: The azimuthal velocity at ψ = 0.1ψ1, where ψ1 = ψ(r = 0.06m, z = 0), for the

isotropic case and two anisotropic cases with T⊥i > T‖i and T⊥i < T‖i, respectively.

The modification of anisotropy to the azimuthal velocity is more significant, as shown
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in Fig.B.8. There are two mechanisms through which Vθ can be modified by pressure

anisotropy. First, the direct presence of ion perpendicular gradient in Eq. (B.19) if Jθ

is eliminated using Eq. (B.14) determines the amount of rotation required to balance it

through the Lorenz force. Therefore a change in T⊥i will reflect directly into a change

in Vθ. Second, the parallel force balance is modified by pressure anisotropy, resulting in

a modified density and thus a modified potential. The difference in potential will also

give a change to Vθ from Eq. (B.19). In Fig.B.8, if the perpendicular pressure is reduced

to half, the flow reversal point moves upstream (higher z), while reducing T‖i moves the

reversal point downstream (lower z). Note that in both cases, the second mechanism is

dominant, since when T⊥i is decreased, we would expected the positive potential gradient

to dominate the force balance, and thus reversal point to move to lower z if the potential

is unchanged. However, Fig.B.8 shows the reverse: the reversal point moves upstream if

T⊥i is reduced, indicating a more remarkable change in the potential from the parallel

dynamics.

B.3.3 Adding source term

We have so far ignored the generation of new ions and electrons. In this section, we

introduce a plasma source term S given by

S =
P

Eizn0
exp(−z/∆z), (B.27)

in which P is the power density of the helicon wave absorption, Eiz = 15.26 eV the

ionization energy of argon atoms, ∆z is the decay length of the heating effect. The

parameters we’ve used are P = 50kWm−3, ∆z = 0.1m, according to the calculation in

Chang et al [184]. Again we have used our iterative method to solve for Vξ, with the

results given in Fig.B.9. When solving for the flow velocity with the source term, we have

used the boundary condition to match the solution to the original one at z = 0.4. It is

shown in Fig.B.9 that the plasma source term affects the flow velocity at z < 0.15 where

the helicon heating is localized. At z = 0.05 a axial flow reversal is presented: new plasma

is generated around this area and “pushes” the existing plasma to the two ends. Besides,

no significant difference is found for all the other profiles: when the flow speed is much

less then the thermal speed, the effect of V ξ on the parallel force balance is small, and the

density and potential are thus not affected.

Figure B.9: The axial velocity on axis, without/with the source term.
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B.4 Finite resistivity

When the resistivity is taken into account, the solution to Eq. (B.20) is qualitatively

different. The ηJθ term will dominate over the other term on the RHS, which gives an

radial cross-field motion of the ions: this is the ambipolar diffusion due to the ion-electron

collisions. In ambipolar diffusion, the ions and electrons are diffused at the same outward

and down stream velocity, meaning that JΨ = Jξ = 0. Equation (B.15) thus states the

deviation of our system from a purely ambipolar system, which again, is due to the need

of a finite JΨ to satisfy the angular momentum conservation as the fluid is compressed.

Assuming this deviation is small, we can still solve our system iteratively. In the initial

step, we set the LHS of Eq. (B.14) and Eq. (B.16) to zero, along with JΨ = Jξ = 0. We

can also leave Eq. (B.19) and (B.21) out of the system for the moment, since they merely

gives the potential and V θ after all the other profiles are solved. Substituting Eq. (B.14)

and (B.20) into Eq. (B.9), we will get

∂

∂ξ

nV ξ

B2
= n

S − L
B2

+
∂

∂ψ

nηr2

B2

[
Z
∂nTe
∂ψ

+
∂nT⊥i
∂ψ

+ n(T‖i − T⊥i)
∂ lnB

∂ψ

]
. (B.28)

Equation (B.28) shows that the resistivity enters the equations by acting as a source/sink

term. Therefore, the solution to V ξ becomes sensitive to the radial density and tempera-

ture gradient.

In Fig.B.10, the on axis axial flow profile as a function of z is plotted for different

initial density profiles at ξ = 0, by changing the radial density scale length an. We have

set the initial condition of the flow profiles to match with the non-resistive solution at

z = 0.4m. Comparing the solutions with finite resistivity to the one without (the helicon

wave source term is retained), it is notable that the peak at z = 0.4 is shifted to z = 0.3.

Moreover, the flow reversal caused by the source term disappears, indicating a strong

“sink” effect when the plasma is transported outward radially. Scan over the initial radial

density length scale an shows that a smaller density radial gradient (higher an) reduces

the effect of radial transport, making the calculated profile closer to the solution without

resistivity. We have also examined the effect of different electron temperature radial

gradient as shown in Fig.B.11, giving similar results: the “sink” effect of radial transport

due to resistivity is mitigated with a reduced temperature gradient. A consistent check

of the density/temperature radial profile is therefore possible through the comparison of

V‖ to the experimental data when certain measurement is not available. We note that the

inclusion of resistivity does not significantly affect other profiles such as the density or

azimuthal rotation profile.

Figure B.10: The axial velocity on axis, with different initial density profiles at ξ = 0.
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Figure B.11: The axial velocity on axis, with different radial temperature gradient.

B.5 Conclusion

In this appendix, we have briefly investigated the possibility of extending our

anisotropic, flowing equilibrium model used in tokamaks to a linear device with a con-

verging magnetic field (MAGPIE). Despite of a few common points, such as the existence

of flux surfaces and magnetic coordinates, the properties of equilibria in MAGPIE and

tokamaks are significantly different. Most importantly, the magnetic field in a linear de-

vice is determined mainly by the external coils and therefore a Grad-Shafranov analysis

is not applicable, while in a tokamak, the flux surfaces are a result of the combination of

external currents and plasma currents. Also, non-ideal effects, such as source terms and

resistivity, are important to the equilibrium in MAGPIE but not in tokamaks. Finally,

the flow in MAGPIE argon plasma is mainly subsonic, making the contribution from cen-

trifugal force and other inertial terms to the force balance less important, while in MAST

(Chapter 2) the centrifugal force leads to a considerable out-shift of the flux surfaces and

constant density contours.

Nevertheless, the extension is proved fruitful. Given the subsonic nature of the plasma

flow found by experiments, we are able to solve the set of fluid equations iteratively.

A pinch of the plasma is clearly shown as the characteristic radius decreases when the

magnetic field strength increases upstream (to higher z). The density builds up as the

plasma is compressed upstream, meanwhile the axial flow velocity reaches its peak at

z = 0.4m where the field strength maximized. The azimuthal flow is sheared and found

to change its direction at z = 0.2 to 0.3m, consistent with the observation from the optic

diagnostics. The major impact of pressure anisotropy is to change the density profile

through the parallel force balance, and thereby the potential and azimuthal flow. In the

T‖i > T⊥i and the T‖i < T⊥i cases, the flow reversal point is moved to lower/higher z,

respectively. We have also explored the impact of a finite source term, which modifies

the axial flow and creates a region where the plasma flows backward. The solution to the

axial flow profile becomes different when resistivity is included, since the radial transport

of the plasma due to ion-electron collision serves as a sink in the continuity equation.

Please note that this appendix is an unfinished piece of work. The author does not

have the copyright to include the direct comparison with experiment data in this thesis,

since most of the data are unpublished and belong to the content of another thesis. We

will report the comparison in future publications after the relevant data are publicised.
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